Share Email Print

Proceedings Paper • Open Access

Trends Observed in Ten Years of the BDS Thin Film Laser Damage Competition (Conference Presentation)

Paper Abstract

The thin film damage competition series at the Boulder Damage Symposium provides an opportunity to observe general trends in laser damage behavior between different coating types (high reflector, anti-reflector, Polarizer, and Fabry-Perot filter), wavelength ranges (193 – 1064 nm), and pulse length ranges (40 fs – 18 ns). Additionally, the impact of deposition process, coating material, cleaning process, and layer count can be studied within a single year or more broadly across the history of this competition. Although there are instances where participants attempted to isolate a single variable to better understand it’s impact on laser resistance, this series of competitions isolates the variable of the damage testing service and protocol for a wide variety of participants. In total 275 samples from 58 different participants have been tested at four different laser damage testing facilities over the last ten years. Hafnia was clearly the best high refractive index material except for UV applications; although a wide range of high refractive index materials performed well. The best deposition process varied significantly between the different competitions, so it was much more strongly dependent on the coating type, wavelength, and pulse duration. For 1064 nm coatings with nanosecond scale pulse lengths, e-beam coatings tended to be the best performers. For short pulse length NIR mirrors and nanosecond pulse length UV mirrors, densified coating processes which all involved sputtering of the target material were the best performers. For UV AR coatings and excimer mirrors, both tested at nanosecond pulse lengths, they tended to favor very low energetic deposition methods yielding soft coatings such as sol gel dip coating for the AR and resistive heating of fluorides for the excimer mirrors. Finally cleaning method and layer count have had a less obvious correlation with laser resistance over the history of this thin film damage competition.

Paper Details

Date Published: 26 November 2018
Proc. SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 1080508 (26 November 2018); doi: 10.1117/12.2501954
Show Author Affiliations
Christopher J. Stolz, Lawrence Livermore National Lab. (United States)
Raluca A. Negres, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 10805:
Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference
Christopher Wren Carr; Gregory J. Exarhos; Vitaly E. Gruzdev; Detlev Ristau; M.J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?