Share Email Print

Proceedings Paper

SNR-optimized image fusion for transparent object inspection
Author(s): Johannes Meyer; Wolfgang Melchert; Matthias Hartrumpf; Thomas Längle; Jürgen Beyerer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Automated visual inspection of transparent objects is important for many industrial fields. Especially the detection of scattering impurities inside complexly shaped transparent objects is a demanding task. Usually, so-called dark field approaches are employed in this case. However, these methods often fail due to direct reflections of the light sources, e.g., at the test object's surface which cannot be distinguished from signals of real material defects. This paper introduces an inspection approach which captures images at different illumination modalities and fuses them while optimizing the signal-to-noise ratio. Two fusion strategies are presented, which employ prior knowledge in order to obtain optimized inspection images. The signal component of the observed images is defined as the signal corresponding to visualized defects. Conversely, all light reaching the sensor due to scattering or reflections caused by the test object's geometry is regarded as noise. The signal values and noise values depend on both the pixel position and the respective illumination source. Prior knowledge about the signal and noise components allows to estimate the spatially resolved SNR for every illumination channel. The images resulting from the fusion step show scattering material defects with high contrast whereas surface reflections are nearly completely mitigated by the SNR-optimized fusion strategies. Several experiments state the performance of the presented approaches.

Paper Details

Date Published: 24 May 2018
PDF: 11 pages
Proc. SPIE 10677, Unconventional Optical Imaging, 106770A (24 May 2018); doi: 10.1117/12.2307392
Show Author Affiliations
Johannes Meyer, Karlsruher Institut für Technologie (Germany)
Wolfgang Melchert, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Matthias Hartrumpf, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Thomas Längle, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Jürgen Beyerer, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)

Published in SPIE Proceedings Vol. 10677:
Unconventional Optical Imaging
Corinne Fournier; Marc P. Georges; Gabriel Popescu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?