Share Email Print

Proceedings Paper

Study of optimal measurement conditions for time-domain diffuse optics systems
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Light is a powerful non-invasive tool that can be exploited to probe highly scattering media like biological tissues for different purposes, from the detection of brain activity to the characterization of cancer lesions. In the last decade, timedomain diffuse optics (TDDO) systems demonstrated improved sensitivity when using time-gated acquisition chains and short source-detector separations (ρ), both theoretically and experimentally. However, the sensitivity to localized absorption changes buried inside a diffusive medium strongly depends on many parameters such as: SDS, laser power, delay and width of the gating window, absorption and scattering properties of the medium, instrument response function (IRF) shape, etc. In particular, relevant effects due to slow tails in the IRF were noticed, with detrimental effects on performances. We present simulated experimental results based on the diffusion approximation of the Radiative Transfer Equation and the perturbation theory subjected to the Born approximation. To quantify the system sensitivity to deep (few cm) and localized absorption perturbations, we exploited contrast and contrast-to-noise ratio (CNR), which are internationally agreed on standardized figures of merit. The purpose of this study is to determine which parameters have the greatest impact on these figures of merit, thus also providing a range of best operative conditions. The study is composed by two main stages: the former is a comparison between simulations and measurements on tissue-mimicking phantom, while the latter is a broad simulation study in which all relevant parameters are tuned to determine optimal measurement conditions. This study essentially demonstrates that under the influence of the slow tails in the IRF, the use of a small SDS no longer corresponds to optimal contrast and CNR. This work sets the ground for future studies with next-generation of TDDO components, presently under development, providing useful hints on relevant features to which one should take care when designing TDDO components.

Paper Details

Date Published: 17 May 2018
PDF: 8 pages
Proc. SPIE 10685, Biophotonics: Photonic Solutions for Better Health Care VI, 1068514 (17 May 2018); doi: 10.1117/12.2307370
Show Author Affiliations
Anurag Behera, Politecnico di Milano (Italy)
Laura Di Sieno, Politecnico di Milano (Italy)
Antonio Pifferi, Politecnico di Milano (Italy)
Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie (Italy)
Fabrizio Martelli, Univ. degli Studi di Firenze (Italy)
Alberto Dalla Mora, Politecnico di Milano (Italy)

Published in SPIE Proceedings Vol. 10685:
Biophotonics: Photonic Solutions for Better Health Care VI
Jürgen Popp; Valery V. Tuchin; Francesco Saverio Pavone, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?