Share Email Print

Proceedings Paper

Feature tracking for automated volume of interest stabilization on 4D-OCT images
Author(s): Max-Heinrich Laves; Andreas Schoob; Lüder A. Kahrs; Tom Pfeiffer; Robert Huber; Tobias Ortmaier
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance.

Paper Details

Date Published: 3 March 2017
PDF: 7 pages
Proc. SPIE 10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, 101350W (3 March 2017); doi: 10.1117/12.2255090
Show Author Affiliations
Max-Heinrich Laves, Leibniz Univ. Hannover (Germany)
Andreas Schoob, Leibniz Univ. Hannover (Germany)
Lüder A. Kahrs, Leibniz Univ. Hannover (Germany)
Tom Pfeiffer, Univ. zu Lübeck (Germany)
Robert Huber, Univ. zu Lübeck (Germany)
Tobias Ortmaier, Leibniz Univ. Hannover (Germany)

Published in SPIE Proceedings Vol. 10135:
Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster III; Baowei Fei, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?