Share Email Print

Proceedings Paper

Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system
Author(s): A. Ponticorvo; R. Rowland; B. Yang; B. Lertsakdadet; C. Crouzet; N. Bernal; B. Choi; A. J. Durkin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the “Perfusion Unit” output of commercial systems.

Paper Details

Date Published: 6 February 2017
PDF: 7 pages
Proc. SPIE 10037, Photonics in Dermatology and Plastic Surgery, 100370I (6 February 2017); doi: 10.1117/12.2253957
Show Author Affiliations
A. Ponticorvo, Beckman Laser Institute and Medical Clinic (United States)
R. Rowland, Beckman Laser Institute and Medical Clinic (United States)
B. Yang, Beckman Laser Institute and Medical Clinic (United States)
B. Lertsakdadet, Beckman Laser Institute and Medical Clinic (United States)
C. Crouzet, Beckman Laser Institute and Medical Clinic (United States)
N. Bernal, UC Irvine Regional Burn Ctr. (United States)
B. Choi, Beckman Laser Institute and Medical Clinic (United States)
A. J. Durkin, Beckman Laser Institute and Medical Clinic (United States)

Published in SPIE Proceedings Vol. 10037:
Photonics in Dermatology and Plastic Surgery
Bernard Choi; Haishan Zeng; Nikiforos Kollias, Editor(s)

© SPIE. Terms of Use
Back to Top