Share Email Print
cover

Proceedings Paper

James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment
Author(s): Sylvain Egron; Charles-Philippe Lajoie; Lucie Leboulleux; Mamadou N'Diaye; Laurent Pueyo; Élodie Choquet; Marshall D. Perrin; Marie Ygouf; Vincent Michau; Aurélie Bonnefois; Thierry Fusco; Clément Escolle; Marc Ferrari; Emmanuel Hugot; Rémi Soummer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST’s three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

Paper Details

Date Published: 29 July 2016
PDF: 12 pages
Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99044A (29 July 2016); doi: 10.1117/12.2233650
Show Author Affiliations
Sylvain Egron, Space Telescope Science Institute (United States)
ONERA (France)
Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Charles-Philippe Lajoie, Space Telescope Science Institute (United States)
Lucie Leboulleux, Space Telescope Science Institute (United States)
ONERA (France)
Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Mamadou N'Diaye, Space Telescope Science Institute (United States)
Laurent Pueyo, Space Telescope Science Institute (United States)
Élodie Choquet, Space Telescope Science Institute (United States)
Marshall D. Perrin, Space Telescope Science Institute (United States)
Marie Ygouf, Space Telescope Science Institute (United States)
Vincent Michau, ONERA (France)
Aurélie Bonnefois, ONERA (France)
Thierry Fusco, ONERA (France)
Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Clément Escolle, Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Marc Ferrari, Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Emmanuel Hugot, Aix Marseille Univ., Lab. d'Astrophysique de Marseille, CNRS (France)
Rémi Soummer, Space Telescope Science Institute (United States)


Published in SPIE Proceedings Vol. 9904:
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
Howard A. MacEwen; Giovanni G. Fazio; Makenzie Lystrup; Natalie Batalha; Nicholas Siegler; Edward C. Tong, Editor(s)

© SPIE. Terms of Use
Back to Top