Share Email Print
cover

Proceedings Paper

Intratumor photosensitizer injection for photodynamic therapy: Pre-clinical experience with methylene blue, Pc 4, and Photofrin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Intravenous administration of some photosensitizers, including the FDA-approved Photofrin, results in significant systemic photosensitivity and a 2-3-day drug-light interval. Direct intratumor injection of photosensitizer could potentially eliminate these negative aspects of photodynamic therapy (PDT), while requiring a lower photosensitizer dose to achieve comparable drug concentration in the target tissue. We performed PDT using intratumor injection of 3 photosensitizers, methylene blue (MB), Pc 4, and Photofrin, in mouse tumor models. After a 0-15 minute drug-light interval, illumination was delivered by appropriate diode lasers. For animals receiving MB or Pc 4, surface illumination was delivered using a microlens-terminated fiber. For animals receiving Photofrin, interstitial illumination was delivered by a 1 cm diffuser. In animals receiving MB or Pc 4, tumor dimensions were measured daily post-PDT, with a cure being defined as no palpable tumor 90 days post-treatment. For Photofrin, animals were sacrificed 24 hours post-PDT and tumors were excised, with samples HE stained to assess PDT-induced necrosis. 55% of tumors were cured with MB-PDT, and significant tumor growth delay (p=0.002) was observed for Pc 4. For Photofrin PDT, the mean necrosis radius was 3.4±0.8 mm, compared to 2.9±1.3 mm for systemic administration, which was not a significant difference (p=0.58). Intratumoral injection of the photosensitizers methylene blue, Pc 4, and Photofrin is feasible, and results in appreciable tumor response. Further investigation is necessary to optimize treatment protocols and assess the systemic photosensitivity induced by intratumor injection.

Paper Details

Date Published: 1 March 2016
PDF: 7 pages
Proc. SPIE 9694, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXV, 969418 (1 March 2016); doi: 10.1117/12.2229544
Show Author Affiliations
Timothy M. Baran, Univ. of Rochester Medical Ctr. (United States)
Thomas H. Foster, Univ. of Rochester Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 9694:
Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXV
David H. Kessel; Tayyaba Hasan, Editor(s)

© SPIE. Terms of Use
Back to Top