Share Email Print

Proceedings Paper

Acousto-optic tunable filter as a notch filter
Author(s): Neelam Gupta
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An acousto-optic tunable filter (AOTF) is an all solid-state robust device with no-moving parts that has been used in the development of hyperspectral imagers from the ultraviolet to the longwave infrared. Such a device is developed by bonding a piezoelectric transducer on a specially cut prism in a birefringent crystal. When broadband white light is incident on the prism input facet, two orthogonally polarized diffracted beams at a wavelength with a narrowband bandpass are transmitted. The transmitted wavelength can be tuned by varying the applied radio frequency (RF). This is what is done in a hyperspectral imager. An AOTF can also be used with multiple RFs applied at the same time to diffract a number of different wavelengths. This mode can be exploited to design a tunable optical notch filter where multiple RFs are applied simultaneously such that all wavelength in a specific range can transmit except for a specific wavelength which is notched. We designed an optical system using a TeO2 AOTF with telecentric confocal optics operating in the shortwave infrared (SWIR) with a 16-channel RF driver where both the amplitude and frequency can be controlled independently for each channel. We will discuss the optical system, its characterization and present results obtained.

Paper Details

Date Published: 17 May 2016
PDF: 11 pages
Proc. SPIE 9822, Advanced Optics for Defense Applications: UV through LWIR, 982212 (17 May 2016); doi: 10.1117/12.2224238
Show Author Affiliations
Neelam Gupta, U.S. Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 9822:
Advanced Optics for Defense Applications: UV through LWIR
Jay N. Vizgaitis; Bjørn F. Andresen; Peter L. Marasco; Jasbinder S. Sanghera; Miguel P. Snyder, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?