Share Email Print

Proceedings Paper

Numerical study on 3D composite morphing actuators
Author(s): Kazuma Oishi; Makoto Saito; Nishita Anandan; Kevin Kadooka; Minoru Taya
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

Paper Details

Date Published: 1 April 2015
PDF: 9 pages
Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) 2015, 94301M (1 April 2015); doi: 10.1117/12.2085603
Show Author Affiliations
Kazuma Oishi, Nabtesco Corp. (Japan)
Makoto Saito, Nabtesco Corp. (Japan)
Nishita Anandan, Univ. of Washington (United States)
Kevin Kadooka, Univ. of Washington (United States)
Minoru Taya, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 9430:
Electroactive Polymer Actuators and Devices (EAPAD) 2015
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?