Share Email Print

Proceedings Paper

Overlay improvement by exposure map based mask registration optimization
Author(s): Irene Shi; Eric Guo; Ming Chen; Max Lu; Gordon Li; Rivan Li; Eric Tian
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it’s observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6]

In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.

Paper Details

Date Published: 19 March 2015
PDF: 10 pages
Proc. SPIE 9424, Metrology, Inspection, and Process Control for Microlithography XXIX, 942413 (19 March 2015); doi: 10.1117/12.2084958
Show Author Affiliations
Irene Shi, Semiconductor Manufacturing International Corp. (China)
Eric Guo, Semiconductor Manufacturing International Corp. (China)
Ming Chen, Semiconductor Manufacturing International Corp. (China)
Max Lu, Semiconductor Manufacturing International Corp. (China)
Gordon Li, Semiconductor Manufacturing International Corp. (China)
Rivan Li, Semiconductor Manufacturing International Corp. (China)
Eric Tian, Semiconductor Manufacturing International Corp. (China)

Published in SPIE Proceedings Vol. 9424:
Metrology, Inspection, and Process Control for Microlithography XXIX
Jason P. Cain; Martha I. Sanchez, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?