Share Email Print

Proceedings Paper

Comparison of semi-analytical to CFD model calculations and to experimental results of subsonic flowing-gas and static DPALs
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Comparison between a semi-analytical and two- and-three dimensional computational fluid dynamics (2D and 3D CFD) models is reported. The models take into account effects of temperature rise and losses of alkali atoms due to ionization and chemical reactions, resulting in a decrease of the slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. Both models are applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowinggas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. Comparison of the models applied to the flowinggas DPAL shows that for low pump power both models predict very close values of the laser power; however, at higher pump power, corresponding to saturation of the absorption of the pump transition, the values of the laser power calculated using the 2D CFD model are much higher than those obtained using the semi-analytical model.

Paper Details

Date Published: 7 October 2014
PDF: 8 pages
Proc. SPIE 9251, Technologies for Optical Countermeasures XI; and High-Power Lasers 2014: Technology and Systems, 92510V (7 October 2014); doi: 10.1117/12.2067020
Show Author Affiliations
Boris D. Barmashenko, Ben-Gurion Univ. of the Negev (Israel)
Salman Rosenwaks, Ben-Gurion Univ. of the Negev (Israel)
Karol Waichman, Ben-Gurion Univ. of the Negev (Israel)

Published in SPIE Proceedings Vol. 9251:
Technologies for Optical Countermeasures XI; and High-Power Lasers 2014: Technology and Systems
David H. Titterton; Willy L. Bohn; Harro Ackermann; Mark A. Richardson; Robert J. Grasso, Editor(s)

© SPIE. Terms of Use
Back to Top