Share Email Print
cover

Proceedings Paper

Information-theoretic method for wavelength selection in bioluminescence tomography
Author(s): Hector R. A. Basevi; James A. Guggenheim; Hamid Dehghani; Iain B. Styles
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Practical imaging constraints restrict the number of wavelengths that can be measured in a single Biolumines- cence Tomography imaging session, but it is unclear which set of measurement wavelengths is optimal, in the sense of providing the most information about the bioluminescent source. Mutual Information was used to integrate knowledge of the type of bioluminescent source likely to be present, the optical properties of tissue and physics of light propagation, and the noise characteristics of the imaging system, in order to quantify the information contained in measurements at different sets of wavelengths. The approach was applied to a two-dimensional sim- ulation of Bioluminescence Tomography imaging of a mouse, and the results indicate that different wavelengths and sets of wavelengths contain different amounts of information. When imaging at a single wavelength, 580nm was found to be optimal, and when imaging at two wavelengths, 570nm and 580nm were found to be optimal. Examination of the dispersion of the posterior distributions for single wavelengths suggests that information regarding the location of the centre of the bioluminescence distribution is relatively independent of wavelength, whilst information regarding the width of the bioluminescence distribution is relatively wavelength specific.

Paper Details

Date Published: 14 June 2013
PDF: 6 pages
Proc. SPIE 8799, Diffuse Optical Imaging IV, 879909 (14 June 2013); doi: 10.1117/12.2033320
Show Author Affiliations
Hector R. A. Basevi, The Univ. of Birmingham (United Kingdom)
James A. Guggenheim, The Univ. of Birmingham (United Kingdom)
Hamid Dehghani, The Univ. of Birmingham (United Kingdom)
Iain B. Styles, The Univ. of Birmingham (United Kingdom)


Published in SPIE Proceedings Vol. 8799:
Diffuse Optical Imaging IV
Paola Taroni; Hamid Dehghani, Editor(s)

© SPIE. Terms of Use
Back to Top