
Proceedings Paper
Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approachFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy
weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the
target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against
rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks.
For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of
RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to
estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by
unavoidable atmospheric turbulence.
Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM
object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and
isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt
image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show
the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the
effect of climate or weather condition.
It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are
done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.
Paper Details
Date Published: 25 October 2013
PDF: 7 pages
Proc. SPIE 8890, Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI, 88901B (25 October 2013); doi: 10.1117/12.2028667
Published in SPIE Proceedings Vol. 8890:
Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI
Adolfo Comeron; Karin Stein; John D. Gonglewski; Evgueni I. Kassianov; Klaus Schäfer, Editor(s)
PDF: 7 pages
Proc. SPIE 8890, Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI, 88901B (25 October 2013); doi: 10.1117/12.2028667
Show Author Affiliations
Ivo Buske, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Wolfgang Riede, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Wolfgang Riede, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
Jürgen Zoz, MBDA Deutschland GmbH (Germany)
Published in SPIE Proceedings Vol. 8890:
Remote Sensing of Clouds and the Atmosphere XVIII; and Optics in Atmospheric Propagation and Adaptive Systems XVI
Adolfo Comeron; Karin Stein; John D. Gonglewski; Evgueni I. Kassianov; Klaus Schäfer, Editor(s)
© SPIE. Terms of Use
