EMA Modelled Alternative EUV Absorber Materials Considering Optical and Stability Behavior

Rajiv N. Sejpal and Bruce W. Smith, Microsystems Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY 14623

ABSTRACT

Alternatives to Ta-based absorbers are being considered for next generation lithography nodes to reduce 3D mask effects and to improve image modulation through phase interference. Low complex refractive index ($n - ik$) materials can provide phase shifting behavior at thicknesses less than those needed for conventional absorbers, essentially acting as attenuated phase shift mask (attPSM) films. Identifying attPSM absorber thickness and consequent phase requires determining optimum phase shift mask reflectance. Imaging with absorbers at high reflectance show better imaging performance. The absorber thickness is determined where the interference effects lead to high absorber reflectivity. Low refractive index ($n$) materials are therefore desired as candidate attPSM absorbers. Low $- n$ material combinations identified using Wiener bounds and Effective media approximation (EMA) modelling are optimized for NILS and MEEF using absorber reflectivity on-line-space and contact-holes patterns. Absorber candidates at optimum thickness for contact holes are compared with conventional Ta-based absorber using reflected nearfield intensity imaging.

1. Introduction

EUV lithography at 0.33 numerical aperture (NA) as implemented uses a 55 – 70nm Ta-based mask absorber. The current EUV mask illuminated at oblique illumination angles introduces mask induced imaging effects that lead to contrast loss. Imaging the next technological nodes with current mask architecture will be extremely challenging. Fig. 1(a) shows the loss of aerial image NILS with pitch scaling for line-space and contact holes patterned using a Ta-based absorber. Therefore, the semiconductor manufacturing industry has shifted its focus on finding a thinner, alternative mask absorber candidate. Two alternative optical designs proposed are the masks with high extinction coefficient (high $- k$) and low refractive index (low $- n$) attenuated phase shifting mask (attPSM) absorbers. Thinner mask absorber candidates possess the capability to alleviate some 3D mask effects in addition to improved aerial image normalized image log slope (NILS), lower dose to size and higher depth of focus.

High NILS is desired to achieve lower line width roughness (LWR), better CD uniformity (LCDU) and hence, lower stochastic effects. Higher NILS associated with the phase shifting masks have also shown to improve image fidelity compared to the conventional Ta – based masks. Identifying absorber candidate materials that maximize NILS is therefore a priority. Additionally, shrinking feature sizes in the future nodes will experience enhanced mask effects as shown in Fig. 1(b). Therefore, co-optimizing mask error enhancement

Figure 1. (a) NILS vs Pitch for dense lines-spaces and contact hole patterns and (b) MEEF vs Pitch for dense lines-spaces and contact-hole patterns for a conventional Ta-absorber mask stack.
Deep Learning Needs Lots of Data and Data of Your Choice: Digital Twins are the Solution

Aki Fujimura, D2S, Inc.

Deep learning (DL) has become an integral part of the success of many companies – and not just the Amazons and Gooles of the world, but also manufacturing companies like GE and Tesla. So why doesn’t it play a larger role for semiconductor manufacturing yet? There have been many papers and some reported successes, yet only 22% of the luminaries participating in the 2021 eBeam Initiative Luminaries survey see DL becoming a competitive advantage by next year. Why?

DL prototypes are relatively easy to create, but applying that prototype to production is much, much harder. The gap between prototype and production is data. A lot of data. DL is “programmed” and tuned through the data presented to the neural networks. If the goal of the application is to, for instance, identify fatal mask errors, the neural nets must be presented with millions of examples of the fatal errors to train the network to recognize them.

And this is a big problem for our industry, for two reasons. First, the data used by mask makers does not belong to them – it belongs to their customer, or even their customer’s customer. Vendors developing DL applications for mask makers cannot get enough data to sufficiently train a DL for production deployment. Second, DL networks for many applications need to be trained with a sufficient volume of anomalous data to be able to identify a wide range of error conditions. But mask makers take great pains to avoid such anomalies and so such data is in short supply. Anomalous data could be created using standard mask making techniques, but this uses scarce and expensive production resources and doesn’t produce data in sufficient volume for DL training.

So, how do we solve the data problem for our industry? Digital twins are the answer. Digital twins – digital representations of real-world equipment and processes – can produce the volume of data required for successful DL. Most crucially, they can produce whatever kind of data is required, in the volumes required. The process of moving from DL prototype to DL production application means tuning the DL networks with very specific data to meet the specific task at hand.

Take the ubiquitous example of a DL network that can identify cats from dogs, and within those categories, identify specific breeds of each animal. If this DL network misclassifies an American Shorthair cat as an Egyptian cat, you need to get the data to train the network to correctly identify American Shorthair cats. In this case, that data is easily available on the internet. However, for semiconductor manufacturing, there is no “ImageNet” of SEM images to use to clarify classifications for a DL network. Physically creating this data is far too expensive and time-consuming – especially because the process of refining a DL network for production-level accuracy involves many, many rounds of training/inferencing/tuning.

This is why digital twins – whether in the form of simulation or DL-based digital twins – play such a critical role in developing production-worthy DL applications. Many papers have been presented that provide good roadmaps for creating and using digital twins in semiconductor manufacturing, most notably by the participants in the Center for Deep Learning for Electronics Manufacturing, or CDLe (cdle.ai).

There is no reason that DL can’t be as important a factor for success for semiconductor manufacturing as it is in so many other industries. The road ahead is clear: careful application, commitment of resources over time, and most importantly, using digital twins to create the massive volumes of data required for DL production success.
Figure 1. EUV mask stack with 40 Mo/Si bilayer pairs on a SiO₂ substrate followed by a Ru capping layer and the absorber.

2. Ideal Mask Reflectivity

To determine the ideal reflectance, a 3D mask is designed using the Prolith Simulator. The mask stack includes a multilayer mirror of 40 Mo (3nm)/Si (4nm) bilayer pairs on a 2nm ruthenium capping layer and the absorber, as shown in Fig. 2. The mask stack is illuminated with a 13.5nm source wavelength at a chief ray angle (CRA) of 6°. A line/space pattern at a pitch of 30nm and contact-holes pattern at pitch of 40nm are used test cases to determine the ideal mask absorber reflectivity and thickness for best NILS and MEEF. While the multilayer mirror will also influence the overall mask reflectivity, only the mask absorber thickness is varied within the range of 25 – 55nm to simulate the effect of the varying reflectance.

2.1 Lines - Spaces

Equal line/space patterns are illuminated with a dipole source. The sigma center (σc) and sigma radius (σr) are determined using Eqs. (1) and (2). Here, λ is the source wavelength, p is the pitch and, NAo and NAc are the numerical aperture of the objective and condenser lenses, respectively. For a 30nm pitch, σc = 0.68 and σr = 0.31.

\[
\sigma_c = \frac{\lambda}{2pN_A o} \quad (1)
\]
\[
\sigma_r = \frac{N_A c}{N_A o} \quad (2)
\]

Figure 3(a) shows the aerial image NILS and reflectivity versus the absorber thickness for an attPSM candidate absorber. The reflectivity values are normalized to multilayer mirror (with capping layer) reflectivity at CRA = 6°. The interference effects of a phase shifting mask are projected on the image plane that causes NILS swing. The reflectivity trend gradually increases with reduction in the absorber thickness. NILS trend also improves as the height of the absorber is reduced to 30nm, beyond which the NILS degrades. NLS value peaks with peak in the absorber reflectivity as indicated by the arrows. Fig. 3(b) plots the MEEF and reflectivity against the absorber thickness. Similar to NILS, MEEF trend gradually increases with absorber reflectivity. However, MEEF observes a trench when the reflectivity peaks. Suitable values of NILS and MEEF are observed at reflectivity peaks. Highly reflectance attPSM absorbers are therefore desired. Furthermore, within the desired 30 – 45 nm absorber thickness range, the reflectivity peaks 2 to 3 times. This corresponds to multiple optimum thickness ranges. Appropriate mask absorber thickness can then be chosen based on design and processing requirements. For example, a 40nm absorber thickness will have an aerial image NILS of 2.15 at 16% mask reflectivity and phase shift of approximately 233°.

2.2 Contact - Holes

Similar to line/space patterns, contact-holes are also co-optimized to determine the impact of mask reflectivity on imaging performance. Dense contact-holes array with a 40nm pitch (x- and y-pitch) is illuminated with a quadrupole light source. The σc = 0.72 and σr = 0.31 values are determined using Eqs. (3) and (2), respectively.

\[
\sigma_c = \frac{\lambda}{\sqrt{2pN_A o}} \quad (3)
\]

Figure 4(a) & (b) show the NILS and MEEF vs. absorber thickness and reflectivity, respectively. NILS behavior of contact-holes is similar to that of line/space pattern. NILS peaks with peak in the absorber reflectivity.
However, unlike lines and spaces, the overall trend of MEEF reduces with absorber thickness. Furthermore, MEEF swing is less pronounced and the trench in MEEF swing does not occur with reflectivity peak. MEEF is therefore more dominant and, an appropriate value of absorber reflectivity and thickness can be chosen when MEEF is below acceptable tolerances.

Although high absorber reflectance is desired for optimum NILS and MEEF, care must be exercised in determining the appropriate reflectivity values to avoid printing false contacts that may lead to stochastic failures. Figure 5 demonstrates this effect by plotting the image in the resist as the absorber reflectivity increased from 5% and 30%. False contacts at diagonal locations begin to appear in the resist for relative reflectivity values of 20% and above, indicated by yellow spots.

As the absorber reflectivity increases, intensity of false contact (FC) increases and, the relative aerial image (AI) intensity associated with the clear areas of the contact-holes decreases. This can be characterized using the false contact ratio (FCR) in Eq. (4). Figure 6 plots the FCR vs absorber thickness and reflectivity. The FC ratio should be as large as possible to reduce the probability of stochastic failures. Therefore, a trade-off exists between the imaging performance and FCR ratio.

\[
\text{FCR} = \frac{\text{AI Intensity}}{\text{FC Intensity}}
\]  

3. Materials Modelling Using EMA

Identifying materials and combinations that satisfy the optical design requirements for attenuated phase shifting mask absorber is challenging. As we are interested in materials that act as high reflection phase shifting mask absorbers, we need materials with low refractive index values (low \( n \) – low \( k \)). Standard thin films considerations, such as in Eqs. (5) & (6) in combination with \( k - n \) plots at 13.5nm enable recognizing the regions of the refractive index spectrum that meet the design requirement. As few single elements meet the high reflectivity and phase characteristics essential for optimum imaging performance, candidate absorbers are most likely alloys and/or compounds.

\[
\Delta \phi = \frac{4\pi d}{k \cos \theta} (1 - n)
\]  

\[
k = \frac{\ln \left( \frac{1 - R}{T} \right)}{2 \Delta \phi} (n - 1)
\]
Here, $\Delta \varnothing$ is the phase shift, $d$ is the thickness, $n$ is the refractive index, $k$ is the extinction coefficient, $T$ is the transmission function or the absorber reflectivity, and $R$ is the reflection function.

$$\varepsilon = (n + ik)^2 \quad (7)$$

It is convenient to discuss and model alloys using the complex dielectric constant in Eq. (7) rather than the refractive index. Figure 7(a) plots a variety of materials in the complex dielectric constant space. For this purpose, we employ dielectric constant modelling using Wiener Bounds and Effective Media Approximation models. Wiener Bounds are the extreme bounds on the value of the effective dielectric constant $\varepsilon_{eff}$ of a composite material. Wiener Bounds are defined by determining the dielectric response of the composite to the incident light with its electric field vector perpendicular ($\varepsilon_{\perp}$) and parallel to the structure ($\varepsilon_{||}$).

The underlying assumption is that the individual layers or nanoparticles, such as employed in a multilayer system, are smaller than the 13.5nm source wavelength. The region $\Omega$, as shown in Fig. 7(b), defined by the Wiener Bounds of the effective media is dependent on the complex dielectric constants ($\varepsilon_i$) of the individual constituents and the material stoichiometry. $\varepsilon_i$ and $\varepsilon_j$ are the complex dielectric constant of the constituent elements.

By using effective medium models in conjunction with Wiener Bounds, a specific value of the effective dielectric constant ($\varepsilon_{eff}$) can be determined. We employ Effective Media Approximation (EMA) model that employs a material depolarization factor $q$. The $\varepsilon_{eff}$ using the EMA model can be calculated using Eq. (8). The EMA model incorporates the effects of the surrounding medium (or the host medium) on the elemental loading medium through the screening parameter $\xi$, shown in Eq. (9). The $q$ factor depends on the geometrical shape and orientation of the suspended nanoparticles in the composite. The value of $q$ ranges from 0 to 1 and in case of spherical nanoparticles with perfect mixing, the $q$ factor assumes a value of 1/3. An example of EMA model for a two-material system is shown by the red line in Fig. 7(b). The EMA model is calculated for fraction volumes $f_1 = 0.6$ and $f_2 = 0.4$ corresponding to materials with dielectric constants $\varepsilon_i$ and $\varepsilon_j$, respectively.

$$\varepsilon_{eff} = \frac{\varepsilon_1 \varepsilon_2 + \varepsilon(f_1 \varepsilon_1 + f_2 \varepsilon_2)}{\varepsilon + (f_1 \varepsilon_1 + f_2 \varepsilon_2)} \quad (8)$$

where,

$$\varepsilon = \frac{(1-q)\varepsilon_{host}}{q} \quad (9)$$

Four alloys from three binary refractory metal systems, specifically Rh – Ti, Mo – Pt and, Rh – Ta, are identified as candidate absorber materials capable of generating relatively high mask reflectivity. The chosen elements in the dielectric constant spectrum are shown in Fig. 7(a). The Wiener bounds of the refractory metal systems along the EMA models of alloys are shown in Fig. 8. The fractional volumes are calculated using the fractional weights obtained from thermodynamic phase diagrams and theoretical material densities. The effective dielectric constants for all the alloys are calculated for a depolarization factor ($q$) = 1/3. The effective dielectric constants are translated back to the refractive index domain and tabulated in Table I below.

4. Imaging Performance Characterization

4.1 Lines – Spaces

All four candidate alloys identified can generate relatively high reflectance at reduced thickness when employed as attPSM absorbers. The litho-
graphic performance of each mask absorber candidate is evaluated for line/space patterns through pitch. The absorber thickness is co-optimized for best NILS and MEEF within the range of 25 – 55nm. Dipole is used as the illumination source with optimized $\sigma_c$ and $\sigma_r$ values using Eqs. (1) and (2). Figure 9(a) – (d) show the NILS performance of the identified absorber candidates versus absorber thickness and reflectivity. Rh$_5$Ti produces highest absorber reflectivity because of its low extinction coefficient. NILS for each absorber is characterized for 24nm, 26nm, and 30nm pitches, respectively. Scaling pitch degrades the aerial image NILS substantially for all the absorber candidates. Two high NILS peaks corresponding to the respective reflectivity peaks for each absorber candidate are highlighted in the desired thickness range. This results in two high NILS absorber thickness values.

The choice of a singular optimum thickness depends on the co-optimization of NILS and MEEF along with the desired phase shift. Rh$_5$Ti generates greater NILS at 20% reflectivity corresponding to 33nm absorber thickness. However, MEEF value at 33nm is also higher than at 39nm absorber thickness. Hence, the optimum thickness for Rh$_5$Ti will depend on the MEEF tolerance for a given design/process. Additionally, the phase shift of Rh$_5$Ti at 33nm is approximately 192°. This value is much lower than the desired $1.2\pi$ phase required to correct the M3D effects associated with the EUV lithography.$^{31}$ Figure 10 plots the MEEF response for all absorbers at respective pitches. MEEF degrades at smaller pitches however, all candidate absorbers have a comparable MEEF response. Individual NILS for each absorber at optimized thickness are listed in Table 2 along with the relative reflectivity and phase shift values.

Based on NILS and MEEF co-optimization, the ideal absorber thickness for line/space pattern is 39nm for Rh$_5$Ti, Rh$_3$Ta and MoPt$_2$. Optimum absorber thickness for MoPt alloy is 46nm. The higher thickness at optimum phase shift for MoPt alloy is due to the relatively higher $n$ value compared to other absorber candidates. This suggests low $n$ – low $k$ refractive index combination is most desired for a thin, high fidelity imaging in EUV.

### 4.2 Contact – Holes

Identified absorber candidates are also evaluated on contact-holes using NILS and MEEF co-optimization to determine best absorber thickness. Figure 11 plots the aerial image NILS response of dense contact-holes array at 36nm and 40nm pitch using the attPSM absorber candidates, respectively. Highlighted regions show higher NILS values in the desired
thickness range of the mask absorber. Although the NILS in the highlighted regions peaks at 39nm absorber thickness, the MEEF dictates the thickness to be at 42nm, as seen in Fig. 12 below. Table 3 lists the NILS at individual pitches for absorber candidate at 42nm thickness.

Choice of a lower absorber thickness around 35nm in case of contact-holes can be argued due to lower MEEF values for a small compromise in NILS. However, the phase shifts associated with the reduced thickness are much lower from the desired 1.2π. This may negatively influence the M3D effects. Controlling MEEF below tolerance values will enable higher NILS at higher mask reflectance. Although, lower relatively lower attPSM reflectance in case of contact-holes may be advantageous to reduce the probability of stochastic failures, as lower reflectance leads to lower FCR ratio.

We also investigate the reflected nearfield intensity of contact-holes at 40nm pitch with a 20nm opening. Reflected nearfield intensity plots help visualize absorber performance under EUVL illumination conditions. Figure 13 plots the reflected nearfield intensities for candidate attPSM absorbers at optimized 42nm thickness along with a 61nm Ta-based absorber. The intensities are plotted for CRA = 6° and 10°. Intensity imbalance at larger illumination angles indicate significant impact of illumination conditions at the mask plane. This may increase M3D effects and negatively impact image contrast. The effects of oblique illumination angle can be clearly observed for Ta-based reference absorber. The intensity loss is even greater when CRA is 10°. In comparison, attPSM candidate absorbers experience reduced intensity loss at both incidence angles.

### 5. Conclusion

Extensive research on attenuated phase shifting mask absorbers for EUV lithography has shown to improve image contrast, dose to size and even extenuate some M3D effects. However, the main challenge is to determine and characterize the best optical design and then, identify materials that satisfy these design requirements. We have presented an approach to investigate the desired optical properties of absorbers using attPSM reflectance. EMA modelled refractory metal alloys as absorber candidates that satisfy the reflectivity requirements are also presented. AttPSM absorbers candidates are found to perform better at high reflectivity values. In case of line-space pattern, NILS swing due to interference effects peaks when absorber reflectivity peaks. Co-optimization with MEEF show a minima in MEEF swing at reflectivity peaks. However, MEEF trend gradually increases with increase in the absorber reflectivity. An optimum thickness of 39nm is identified for all candidate absorbers using the NILS and MEEF cooptimization except the MoPt alloy. MoPt used as an attPSM mask absorber has an optimized thickness range of 46nm. The phase shift values at optimized thickness for all candidate alloys are closer to the 1.2π phase shift required to correct for M3D effects. The higher thickness of the MoPt absorber is due to a relatively higher n value. Therefore, low n – low k absorber candidate is
desired for a thin, high phase – high reflectivity PSM.
Contact-holes behave differently than the line/space pattern in terms of MEEF. The MEEF trend gradually decreases with increase in attPSM absorber reflectance. Furthermore, the MEEF trench does not coincide with reflectivity peak. Although higher NILS is observed for higher reflectivity, MEEF value dominates the mask absorber thickness. Care must be exercised in determining the PSM reflectance to avoid printing false contacts. Higher mask reflectance leads to smaller FCR ratio that may lead to a higher probability of stochastic failures. Co-optimization of NILS and MEEF indicate 42nm absorber thickness for contact-holes case. All 42nm attPSM absorber candidates have phase shift in the vicinity of 1.2π. Nearfield intensity response for 40nm pitch contact-hole with a 20nm opening show low intensity loss for all candidate alloys at higher illumination angles compared to a 61nm Ta-based reference absorber. This indicates reduced effect of illumination conditions on imaging performance.

Similar co-optimization applied to additional test cases can help determine a robust optical design for PSM masks in EUV lithography. This can simplify and narrow the choice of material candidates.

6. References


Figure 11. NILS, reflectivity vs absorber thickness of 36nm and 40nm pitch contact-holes arrays imaged using (a) Rh$_3$Ti mask absorber stack, (b) Rh$_3$Ta mask absorber stack, (c) MoPt$_2$ mask absorber stack and (d) MoPt mask absorber stack.

Figure 12. MEEF, reflectivity vs absorber thickness of 36nm and 40nm pitch contact-holes arrays imaged using (a) Rh$_3$Ti mask absorber stack, (b) Rh$_3$Ta mask absorber stack, (c) MoPt$_2$ mask absorber stack and (d) MoPt mask absorber stack.
Figure 13. Reflected nearfield intensity at CRA = 6° and 10° for a 40nm pitch contact-holes pattern with a 20nm opening using (a) 61nm Ta-based reference absorber, (b) Rh$_5$Ti mask absorber stack, (c) Rh$_3$Ta mask absorber stack, (d) MoPt$_2$ mask absorber stack and (e) MoPt mask absorber stack. The reflected nearfield intensities are modelled using DrLitho simulator.  


Industry Briefs

■ Smart Cars to Drive LiDAR Market Growth

The market research firm Yole Development forecasts automotive and industrial applications will take the worldwide LiDAR (Light-Detection-and-Ranging) market from US$1.8 billion in 2020 to US$5.7 billion by 2026, a compound annual growth rate of 21%.


■ IBM, Samsung Unveil VTFET to Extend Moore’s Law

IBM and Samsung Electronics claimed a breakthrough in semiconductor design based on a new IBM architecture touted as enabling an 85% reduction in power consumption. The partners said the Vertical Transport Field-Effect Transistors (VTFET) scheme offers greater power efficiency over FinFET designs, potentially extending Moore’s Law scaling beyond current two-dimensional nanosheet thresholds.

EETimes - IBM, Samsung Unveil VTFET to Extend Moore’s Law

■ DoD Ramps Secure Chip Design Effort

Microsoft and Qualcomm Technologies will lead the second phase of a Pentagon chip initiative designed to leverage U.S. microelectronics capabilities while securing its technology supply chain. Both companies oversaw initial development beginning last year under the Defense Department’s Rapid Assured Microelectronics Prototypes (RAMP) initiative. IBM was a phase-one partner with Microsoft.

https://www.eetimes.com/dod-ramps-secure-chip-design-effort/

■ Global Total Semiconductor Equipment Sales on Track to Top $100 Billion in 2021 for First Time, SEMI Reports.

Global sales of total semiconductor manufacturing equipment by original equipment manufacturers are forecast to reach a new high of $103 billion in 2021, surging 44.7% from previous industry record of $71 billion in 2020, SEMI announced today in releasing its Year-End Total Semiconductor Equipment Forecast - OEM Perspective at SEMICON Japan 2021. The growth is expected to continue with the global total semiconductor manufacturing equipment market expanding to $114 billion by 2022.

Join the premier professional organization for mask makers and mask users!

About the BACUS Group

Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has grown to become the largest and most widely known forum for the exchange of technical information of interest to photomask and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information with mask makers around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, phase shift masks, inspection and repair, metrology, and quality and manufacturing management.

Individual Membership Benefits include:

- Subscription to BACUS News (monthly)
- Eligibility to hold office on BACUS Steering Committee

Corporate Membership Benefits include:

- 3-10 Voting Members in the SPIE General Membership, depending on tier level
- Subscription to BACUS News (monthly)
- One online SPIE Journal Subscription
- Listed as a Corporate Member in the BACUS Monthly Newsletter

Corporate Membership Benefits include:

- 3-10 Voting Members in the SPIE General Membership, depending on tier level
- Subscription to BACUS News (monthly)
- One online SPIE Journal Subscription
- Listed as a Corporate Member in the BACUS Monthly Newsletter

You are invited to submit events of interest for this calendar. Please send to lindad@spie.org.