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Preface

I have been impressed with the urgency of doing. Knowing is not enough;
we must apply. Being willing is not enough; we must do.

— Leonardo da Vinci, (1452-1519)

At its heart engineering is about using science to find creative practical
solutions. It’s a noble profession.

— Queen Elizabeth II, (

Course Objectives

1. Be familiar with engineering graphing, drawing, and sketching techniques

2. Be familiar with the unit systems used in engineering, specifically for this
course

3. Understand unit dimensional analysis calculations and in checking your final
answer for correctness

4. Use exact numbers and significant figures correctly in calculations
5. Conduct linear interpolation on data tables and graphs

6. Obtain a working knowledge of scalars, vectors, and the symbols used in rep-
resenting them, as related to this course

7. Obtain a working knowledge of voltage, current, power and other electricl
parameters

8. Obtain a working knowledge of and be able to solve basic problems related to
complex number systems

9. Understand the difference among different types of numbers used in engi-
neering
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Basics
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Basic Numerical Concepts

.. all knowledge starts from experience and ends in it. Propositions
arrived at by purely logical means are completely empty as regards
reality.

— Albert Einstein, (1879-1955)

1.1 Objectives
1.2 Theory

In all branches of engineering different types of
numbers are used. Integers, decimals, complex
numbers, rational, irrational, and other types are
very important for different applications. For ex-
ample electrical engineers use complex numbers to
represent such quantities as impedance or phasor!
In Microcontrollers, Embedded Systems and Pro-
gramming an integer number is a common term.

This chapter covers the main types used in engi-
neering.

1.3 Natural and Integers

These are the type of numbers we normally use
for counting things, including negative counts.
There are three categories: natural, whole and in-
tegers. The difference among them is in the size of
the group comprising each category. Natural num-

! Later in your studies you will recognize
these parameters.
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bers start at 1 and end at infinity, e.g., 1, 2, 3, ....
Whole numbers are all natural numbers includ-
ing 0,e.g., 0, 1, 2, 3, .... Integers include all whole
numbers and their negative counterpart

eg.,..., 4,-3,-2,-1,0,1, 2, 3, 4, ... Ashort
description of each category follows

1.3.1 Natural Numbers

Negative Positive

These are the most basic numbers we used in our 1oz
daily life. Natural numbers are all positive num- Figure 1.1: Line Numbers Dia-
bers, starting with one and going towards infinity: gram. Natural numbers are the
1.2. 3. 4 positive numbers

2 M b y

They are also called the counting numbers be-
cause we use them when we count objects.
We can use natural numbers to:

* count: 1 car, 2 cars, 3 cars
* express our age: 15 years old, 60 years old
* define monetary units: 1 cent, 10 cents, 20 cents

Notice that all these quantities ar strictly pos-
itive. Figure 1.1 show the line number diagram,
where negative, zero (middle tic), and positive num-
bers are represented in a straight line. The natural
numbers are shown to the right of zero

1.3.2 Whole Numbers \

The whole numbers system consists on the natu-
ral numbers plus zero (0): 0, 1, 2, 3, ...

Normally we use whole numbers when we need
to express a null quantity: no car (0 car).

Figure 1.2 shows the line number diagram. Whole
numbers start at the 0 mark.

Figure 1.2: Whole numbers are
the positive numbers plus 0



1.3.3 Integer Numbers

To represent negative values (a very pervasive task
in engineering), the whole numbers are not enough
since they are only positive. Integer numbers are
define as the set of whole numbers plus the set of
negative numbers: ..., -3, -2, -1, 0, 1, 2, 3, ....

Figure 1.3 shows the representation of the inte-
gers on the line number diagram.

Note 1. We will not strictly define here what

are negative numbers. This is the realm of a
branch of mathematics called Group Theory. We
should,intuitively, say that negative numbers are
located at the left of zero.

We can use integer numbers to represent:
¢ temperatures: 25°C, —25°C, —10°F
* accuracy of a measurement: +3%

¢ relative voltage: V,;, =—-10V

1.4 Fractions and Decimals

This section will study numbers that are a ratio of
two numbers (a fraction) and numbers that contain
decimals.

1.4.1 Rational Numbers

Any number that can be represented as a ratio
(fraction) of two integers is called a rational num-
ber. The exact definition is given in Note 2

Rational numbers can be expressed as fractions
or (if possible) as decimals.

¢ fractions: 1/2, %

BASIC NUMERICAL CONCEPTS 19

2 1 0 1 2

Figure 1.3: Whole numbers are
the positive numbers plus 0

Note 2. A rational number is expresses
by the fraction

Y
where x and y are integers, but y (the
denominator of the fraction) is non-zero
(y#0)

Note: Because by dividing an integer
by one its value does not change, all
integers are rational, but the converse
is not true; not all rational numbers are
integers.
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¢ decimals: 0.25, —-1.5

Sometimes the result of the fraction consists on
an infinity number of decimal places; for exam-
ple, if we divide 1 by 6 we get 0.16666.... We ex-
press this result as 1.666(6) where 6 in parenthesis
means that it is never ending. Also, rational num-
bers contain all integer numbers, because if the
denominator of the fraction is 1 the value of the
numbers becomes equal to x (numerator) and this
is a integer.

Figure 1.4 represents the line number diagram
for rational numbers.

Note 3. Even if the numerator or the denominator,
or both are not integers, we can always convert them
to integers by multiplying both, numerator and de-
nominator, by a suitable power of ten so that both
will become integers. For example, the fraction

10.5

2.75
is equivalent to

10.5 (10.5)(1.0 x 10%) 1050
2.75 (2.75)(1.0 x 102) 275
which is a rational number.

1.4.2 Irrational Numbers

These type of numbers cannot be expressed as
a ratio of two integers. Irrational numbers are
a special kind of numbers, that generally are so-
lutions of certain equations or are constants used
very often in engineering calculations. Examples
include,

¢ 1 (Greek letter pi): m =3.141592653589...

L)
e 2-312 -1 0 051 2 ..

Figure 1.4: Line number dia-
grams representing rational
numb ers.



* ¢, also wn as the Euler’s number (the base of
the natural logarithm): e = 2.718281828459...

* some square and cubic roots:

— the square rot of 2: /2 = 1.414213562373...
— the square root of 3: v/3 = 1.732050807568...

* the Golden Ratio, ¢ = 1.6180339887... is also
irrational (see Note 4).

Note 4. The Golden Ratio is the ratio between two
quantities (a and b, for instance) that satisfy the
following condition: their ratio (a/b) is the same as
the ratio of their sum (a + b) to the larger (a) of the
two quantities.

Figure 1.5 shows the geometric relations of this
statement. If the Greek letter phi (@) represents the
golden ration, we can express the algebraic relation-
ship as follows:

_a+b a
= a b
If b = 1and a > b, then the above equation be-

comes,

a?-a-1=0

The solution is precisely the Golden Ration, or

1+v5
= 2\/_:1.6180339887...

4

All these numbers have never ending decimal
places and can not be written as the ratio of two
integer numbers.
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a b

¢ < ¢
- /

"4
a+b

a+bistoaasaistob

2.5cm]

Figure 1.5: Golden Ratio
(Wikipedia)

Figure 1.6: Irrational Numbers
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Historic Curiosity
Hippasus of Metapontum, (flourished c. 500 BC),
philosopher, early follower of Pythagoras, is though
that together with Aristotle and Heraclitus identi-
fied fire as the first element in the universe.
Hippasus is also credited with the discovery of the
irrational numbers, one of the most important dis-
coveries in the history of science. He found that
the side and diagonal of certain figures, such as the
square and pentagon, are incommensurable. We
know now that if the sides (s) a square are known,
the diagonal is given by d = Vs2 + s2 = V252 = s1/2.

It is impossible to measure exactly the value of
V2, so Hyppasus concluded that v/2 is a different
number than the Pythagorean numbers. He proved
that the /2 cannot be written as a fraction.

Pythagoras taught his disciples that all num-
bers could be expressed as the ratio of integers. In
other words, all numbers are rational numbers, and
the discovery of irrational numbers by Hyppasus is
said to have shocked them.

Some traditions say that he was drowned by the
gods for divulging the nature of the irrational.

Figure 1.6 shows the line diagram of irrational
numbers.

1.4.3 Real Numbers

The combination of the rational and irrational
numbers is the set of real numbers. So the real
numbers include both rational and irrational num-
bers.

Figure 1.8 shows the number line diagram of real
numbers. Any point on the number line is a real

‘.Q ( ( ¥
Ve AL

Hippafis Mctapononus J:‘rrlﬂgarikﬂt

Hyppasus of Metapontum Hip-
pasus of Metapontum (c. 530 —
c. 450 BC) was a Pythagorean
philosopher.[2] Little is known
about his life or his beliefs, but
he is sometimes credited with
the discovery of the existence

of irrational numbers. The dis-
covery of irrational numbers
is said to have been shocking to
the Pythagoreans, and Hippasus
is supposed to have drowned at
sea, apparently as a punishment
from the gods for divulging this.
(Wikipedia)

U W W A W W N N S S S
e —

e 2-312-1-T50 05 12 2 ..

Figure 1.8: Real Numbers


https://en.wikipedia.org/wiki/Hippasus

number. Since they contain all rational numbers,
they also contain natural, whole and integer num-
bers as well as the irrational numbers.

1.5 Complex Numbers

Complex numbers came about when mathemati-
cians discovered that solutions to some quadratic
and cubic equations produced numbers that are
non-existent (not real numbers). So the solutions
were imaginary or non-real.

All the non-real solutions are related to square
roots of negative numbers. Take, for example, the
equation

x2+9=0 (1.51)

Its solutions is as follows

x2+9=0
x%=-9
x=v-9
x=1/(9)(-1
x=3vV-1

but the square root of a negative number (in this
case, vV—1) is not a real number because there is
no real number whose square is a negative num-
ber (see Note 5). No real number satisfies this
equation.

To solve this problem, mathematicians defined a
new type of number called imaginary number. Its
standard symbol is i and it is defined by

=v-1 (1.52)
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Gerolamo Cardano, 1501-1576,
Italian, was one of the most in-
fluential mathematicians of the
Renaissance, and was one of the
key figures in the foundation of
probability and the earliest intro-
ducer of the binomial coefficients
and the binomial theorem in the
Western world. He conceived and
defined complex numbers, who
called them “fictitious”, during
his attempts to find solutions to
cubic equations. (Wikipedia)

Note 5. Every number, positive or
negative, multiplied by itself will produce
all the time a positive number. Which
means that the power of two function will
only produce positive numbers, or

f)=x2>=0

This statement tells us that the square
root, makes sens only for positive num-
bers, if we only have real numbers!


http://en.wikipedia.org/wiki/Gerolamo_Cardano
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Symbol for electrical engineering
The standard symbol, as we said, is the lower-case
letter i (for imaginary). However, when using imag-
inary numbers in electrical or electronic engineer-
ing the symbol is replaced with the lower-case j.
So,

j=v-1

Sometimes, the solution of equations results in a
combination of real numbers and imaginary num-
bers. For example, the solution of the quadratic
equation

x2+2x+5=0 (1.53)

is given by

X =
2
-2+v-16
2
-2+4

therefore Equation 1.53 has two solutions, both
involving imaginary numbers,

x=-1+21
x=—-1-21

We say that these are complex number solu-
tions.
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Definition: Complex Number
A complex number is a pair of values, one real and
one imaginary, expressed as follows

z=a+bi

or
z=a+bj

where a and b are real numbers (positive or neg-
ative).

The number z is the complex number, a is
called the real part and bi is the imaginary part.

Properties and Notation The following proper-
ties of complex numbers are important in order to
be able to work and solve complex number prob-
lems.

Real part. The real part of a complex number can
be represented by a + 0i, whose imaginary part is
0. The real part of a complex number z is denoted
by Re(z). For example given z =5+ 3, then

Re(z)=Re(5+3j=5)

Imaginary part. The (purely) imaginary part is
given by 0+ bi. Its real part is 0. The imaginary
part is denoted by Im(z). For example, the imagi-
nary part of the previous example is written as

Im(z)=Im(5+3j)=3

Notation: Cartesian Form. Using the real and
imaginary parts, complex numbers are denoted

by

25
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Rectangular form:

zZ2=x+ J y Rectangular form (154)

where x is the real part and y is the imaginary
part.

In some cases we can write the imaginary unit
i = j = V=1 in front of the number represent-
ing the imaginary part or at the back. Another
way to denote complex numbers is just to list
the number representing the real part and the
number representing imaginary part as a duple
(the same way we represent point in a Carte-
sian plane) or with and ordered pair enclosed
in a parenthesis (Re(z),Im(z). In this notation
the complex number w = ¢ + jd is equivalent to
w = (c,d). So, the following three expressions are
equivalent:

z2=2-61
z2=2-16
z=(2,-6)

Representation. Complex numbers can not be
represented anymore only on the number line
(horizontal) as we have seen before for real num-
bers, and others. They need two axes for repre-
sentation because a complex number is repre-
sented by two (real) numbers. We have chosen
the standard Cartesian plane to visualize com-
plex numbers. This plane is called Cartesian Figure 1.10: A complex number
Complex Plane when it is used to represent z, as a point (red) and its position
complex numbers. The horizontal axis is used vector (blue). (Wikipediz)
to display the real part, and the vertical axis to
represent the imaginary part. In this plane the
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number z = a + jb is displayed as the point with
coordinates (a, b), and also we indicate the rela-
tive size of the number by drawing a vector from
the origin of the complex plane to the point (a, b).
This distance is called the position vector of z.
Details are shown in Figure 1.10.

Absolute Value and Phase. Similar to absolute

values of real numbers, complex numbers do have
an absolute value. The absolute value of z =
x + yi is determined by

r=lzl=1/x2+y2
r=lzl=1/x2+y2

The absolute value is also known as modulus,
the magnitude, and the norm. Figure 1.11
shows that by Pythagoras’ theorem the absolute
value of z is the distance from the origin to the
point (x, y) representing the complex number.

(1.55)

The phase (or the argument of a complex num-
ber is the angle the position vector makes with

the positive real axis. This is shown in Figure 1.11.

The phase is calculated using trigonometry by

Y

9

(1.56)

arg(z)=¢ = tan™! (

You have to be careful when using Equation 1.56.
The value of the angle calculated with equation-
depends on the individual values of x and y. In
particular, pay attention to the sign of each coor-
dinate.

Figure 1.12 shows complex numbers in the first
and second quadrants, and Figure 1.13 numbers
in the third and fourth quadrants.

BASIC NUMERICAL CONCEPTS

» Re

0

X

Figure 1.11: Argument ¢ and

modulus r locate a point in the

complex plane. (Wikipedia)

A
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B(-4,2) ¢ =|53.43° A4,2)
\\‘ \ @ =2657°
lo) " xaxis
Figure 1.12: First and Second
Quadrant )
y axis
A
o 206,57°
“/’/ Q= .‘%Jiﬂlln \\\ \\
‘\\ \ 0 " x axis
g
D(4,-2)
C(-4,-2)
Figure 1.13: Third and Fourth

Quadrant
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Example 1.5 illustrates these concepts.

Example 1.5.1: Examples Using Eq. 1.56

Some examples using Equation 1.56.
1. x=4.0,y =2.0. First quadrant (See Figure 1.12)

2.0
-1
=t —1=0.5
Lt (4.0)
=26.57° first quadrant

2. x=-4.0,y =2.0. Second quadrant (See Figure 1.12)

2.0
Q= tan™t (—
-4.0

=153.43° Second quadrant

) =-0.5

3. x=-4.0,y = —2.0. Third quadrant (See Figure 1.13)

-2.0
Q= tan_l (TO) =0.5

=206.57° thirdt quadrant

4. x=4.0,y =—-2.0. Fourth quadrant (See Figure 1.13)

—-4.0
@Y= tan_l (W) =-0.5

=333.43° fourtht quadrant

Notation: Polar Form. Using the magnitude and
phase, we can denote complex number by
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Polar form:
z=r/p Polar form (1.57)

This form is also called angle form and
phasor form. It is used in electronics to rep-
resent a phasor with ampliture r and phase
¢. The concept of phasors is extremely im-
portant in electrical engineering.

where r is the magnitude of z given by Equa-
tion (1.55), and ¢ by Equation (1.56)

Summary: Rectangular and Polar forms. We
have seen two forms on how to display complex

numbers.
Rectangular form:
zZ2=x+ _] y Rectangular form (1.58)
Polar form:
2= 7‘& Polar form (159)

1.5.1 Conversions

It is important for the students to know how to con-
vert from one form to the other. Sometimes it is
more convenient to use Equation (1.58) to solve
problems, and in some other instances it is easier
to use Equation (1.59). The following paragraphs
describe the method used to convert from one from
to the other. Refer to Figure 1.11 to understand the
conversions.
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To convert from rectangular to polar form: given z =x+ jy:

r=lzl =\/x%+y>? magnitude (1.510)

¢ = tan~1 (Z) argument (1.511)
Yy

To convert polar to rectangular form: given z =r /p:

X=rcosq real part (1.512)
y=rsing imaginary part (1.513)

Examples 1.5.1 and 1.5.1 show how to perform
the conversions.

Example 1.5.2: Rectangular to Polar Conversions

Example: Convert the complex number z = 3 + j4 to its equivalent polar

form.
Solution:

r=v32+42=5

_1(4 o
p=tan " |=|=53.13
3
therefore:
z2=5/53.13°

Example: Given z = —3 + j4 determine the equivalent polar form of this
complex number.
Solution:

r=v(-32+42=5

4
p=tan"* (—3) =126.87°

(Notice that the point (—3,4) is in the second quadrant.)
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Example 1.5.3: Polar to Rectangular Conversions

Example: Convert the complex number z = 9/25° in polar form to its
equivalent rectangular form.
Solution:

x =9co0s(25°)=8.16
y =9sin(25°) = 3.80

therefore:
z=28.16+;3.80

Example: Convert z =50/210° to its rectangular form
Solution:

x =50c0s(210°) = —43.30
y=50sin(210°) = —25.00

Therefore:
z=-43.30-j25

(Notice that the point (—43.30,—25) is in the third quadrant.)
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1.5.2 Euler’s Formula

By combining the rectangular-coordinates forms for
the real part and imaginary part (Equation (1.512)

and (1.513)) with the Cartesian (rectangular) form
(Equation (1.58)), we get

z=r(cosp+ising) (1.514)
This form is called ¢trigonometric form and it is re-
lated to a formula developed by Leonhard Euler
called the Euler’s Formula, that relates the complex
exponential function e'*, where e is the base of the
natural logarithm, of a real number x to the sine
and cosine of the number. It is expresses as

e = cosx+isinx (1.515)

We now can write the trigonometirc form of a
complex number (Equation (1.514)) using Euler’s
formula. We get,

z=re'? (1.516)

This is the Euler’s form of a complex number.

1.5.3 Summary of Complex Forms

A summary of the representation of complex num-
bers follws.

Leonhard Euler (1707-1783),
Swiss. Euler, born in Bern,
Switzerland, was a mathemati-
cian, physicist, astronomer,
geographer, logician and engi-
neer who made important and
influential discoveries in many
branches of mathematics, such
as infinitesimal calculus and
graph theory, while also making
pioneering contributions to sev-
eral branches such as topology
and analytic number theory. Eu-
ler was one of the most eminent
mathematicians of the 18th cen-
tury and is held to be one of the
greatest in history. (Wikipedia)


http://en.wikipedia.org/wiki/Leonhard_Euler
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Summary of Complex Forms

Imaginary unit: i = j=v -1
Equation forms:
z=a+jb rectangular
z=r/p polar, angle or phasor
z=r(cosp+jsing) trigonometric
z=rel? Euler
Conversions:
r=Va?+b? modulus or magnitude
_1(b
p=tan " |— phase or argument
a
a=rcos@ real part
b=rsing imaginary part
\ y,

1.6 Arithmetic of Complex Numbers

Complex numbers are binomials, so, like real num-
bers, they are added, subtracted, and multiplied in
a similar way. Division, power adn square root are
different and we will treat these operations later
on.

1.6.1 Addition and Subtraction

The addition or subtraction of complex numbers
can be done either mathematically or graphically
in rectangular form. For addition, the real parts
are firstly added together to form the real part of
the sum, and then the imaginary parts to form the
imaginary part of the sum. Similarly for subtrac-
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tion, the real part of the result is the difference of
the real parts of the numbers to be subtracted, and
the imaginary part of the result is the difference
of the two imaginary parts. and this process is as
follows using two complex numbers A and B as ex-
amples.

Addition and Subtraction

Complex numbers: Z1 =a + jb, Zo=c+ jd
Addition:
L =7Z1+27Z9 (1.617)
=(a+c)+jb+d) (1.618)
Subtration:
Z=71-2Z (1.619)
=(a-c)+jb-d) (1.620)

1.6.2 Powers ofi=+v-1

Powers of complex numbers in rectangular forms
are just special cases of products when the power

is a positive whole number. When we perform the
operation, however, we must take into considera-
tion the powers of the imaginary unit, i = v—1. The
following table shows some power of i:

1t=1 i
i’=i f=-1 iT=-j
i9=i

Notice the pattern: the value of the power of i"
cycles in a period of length 4. For instance, if i" =
i then, also i“***™) = where 2 = 0,1,2,.... The
same principle applies to all entries in the table.
Equation (1.621) shows a summary.

Table 1.1: Powers of i = v—1
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if n is one more than a multiple of 4

n_ ) —1 ifnis two more than a multiple of 4 (1.621)
1" = .
—i if n is three more than a multiple of 4
1 ifnis a multiple of 4
Exercise 1. Prove that the entries in the previous
table (Table 1.1) are correct. Im
A Z=X+1y
Y
r/
\@
oNe x > Re
. r\
1.6.3 Complex Conjugate :
—y ______ 2
Z=X—1y
The complex conjugate of a complex number is
a property that is very useful to perform certain Figure 1.15: Geometric represen-
applications. The operation of determining the tation (Argand diagram) of z and
complex conjugate of a complex number consists its conjugate z in the complex

of changing the sign of the imaginary part of the
number. The real part is left unchanged.

plane. The complex conjugate is
found by reflecting z across the
real axis. (Wikipedia)

Notation: The complex conjugate of a number is
displayed by placing a bar on top of the name of the

number.

So, in rectangular form, if z = a + jb, then its
conjugate is z = a — jb. A geometric interpretation

is shown in Figure 1.15.

In polar form, the conjugate of z = re'? is z =

re '?,


http://en.wikipedia.org/wiki/Complex_conjugate
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Properties of Complex Conjugates

Defnitions:
If z = re'?, then z = re %,
Properties:

22 =r

tion (1.622) above.

rectangular form
polar form

Ifz=a+jb,thenz=a-jb,

* The product of a complex number and its conjugate is a real number.

Cartesian form (1.622)
Polar form (1.623)

2z=a’+b%= Izl2

* The inverse of a complex number can be computed using Equa-

2z = |22 (1.624)
2
|z|
= s = (1-625)
z
1 z )
W cartesian form (1.626)
z
Conversions:
r=va?+b2 modulus or magnitude
_1(b
p=tan ~|— phase or argument
a
a=rcosg real part
b=rsing imaginary part
'\ J
Note 6. Special case: Many times we
need to determine the value of the inverse
Exercise 2. Prove Equations (1.622) and (1.623) e
the formula for the inverse of a complex
number, as follows:
1
7
Examples e

Example 1.1. What is the complex conjugate of

T =D
_ )
—j2
=i,
e

Therefore:



following complex numbers? (a) 2+ 31, (b)7i, (c) 5—1
Solutions:
(a) 2—-3i
(b) —Ti
(c) 5+1

Example 1.2. Determine the value of the product of
the complex number A = 4+ 3i and its conjugate
Solutions:

AA =(4+3i)4-3i0)
=(4)4)+(4)(-31) +(31)(4) + (31)(—317)
=16-12i + 12i — 9i2

=16-9(-1)
=16+9
=25

This is a proof of property (1.622).

1.6.4 Multiplication and Division

We will divide this section into multiplication and
division using rectangular and polar forms.

Multiplication with Rectangular Forms. The
multiplication of complex numbers in the rect-
angular form follows more or less the same rules
as for normal algebra along with some additional
rules for the successive multiplication of the i-
operator as described in Table 1.621.

BASIC NUMERICAL CONCEPTS 37



38 MATH FUNDAMENTALS STONEHILL COLLEGE

Multiplication: Cartesian Form

Complex numbers: Z1 =a + jb, Zos=c+ jd
Multiplication:
Z = Z1 X Z2
=(a+7jb)c+jd)
=ac+iad+ibc +j2bd
=(ac—bd)+ jlad + bc)
Therefore,
Re(Z)=ac-bd Real part of the product (1.627)
Im(Z)=ad +bc Imagianry part of the product (1.628)

Division with Rectangular Forms. The division
of complex numbers in rectangular form is a little
more difficult to perform because the denominator
can also be a complex number. A standard proce-
dure is to multiply numerator and denominator
by the complex conjugate of the denominator. This
procedure will convert the denominator into a pure
real number to facilitate the division process. This
is called rationalising.

A sketch of the process is as follows:
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Division: Cartesian Form

Complex numbers: Z1 =a + jb, Zo=c+ jd

Division:

Z
" Zs
Z1Zy
 Z9Z
_ Z1Zy
122

VA

multiply by conjugate

denominator is a real number

Once the denominator becomes a real number, this operation becomes a
standard multiplication of two numbers in Cartesian forms.

Examples

Example 1.3. Multiply the numbers A =5+ 12 and
B=2-13
Solutions:

C=AxB
= (5+i2)(2—i3)
= 10-i15+i4—i2(6)

=10-i11-6(-1)
=10+6-11:
=16-11:

Example 1.4. Divide the numbers A =5 +12 and
B=2-i3
Solutions:
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A
D=2
B

3 5+12

- 2-i3
B+12)(2+13)
(2-13)(2+1i3)

3 4+119

- 13

=0.31+1:1.46

Multiplication with Polar Forms. Rectangular
form is best for adding and subtracting complex
numbers as we saw above, but polar form is often
better for multiplying and dividing, as we will see
here.

To multiply together two vectors or phasors in
polar form, we must first multiply together the
two modulus or magnitudes and then add together
their angles. This is illustrated as follows:
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Multiplication: Polar Form

Complex numbers: Z1 =r1 /91, Zo =2 /P2

Multiplication:
Z = Z1 X Z2
=(r1/91(r2/ps)

=(r1ra) /g1 + @2 multiply the magnitudes, add the angles
Therefore,

Z = Z1 X Z2 (1629)
=(rira) /g1 + @2 (1.630)

Examples

Example 1.5. Multiply the complex numbers z =
10/30° and w =5/120° Solutions:

U=zw
=(10/30°)(5/120°)
=50/150° answer

Division with Polar Forms. When dividing two
vectors or phasors in polar form, we get a polar
form number whose magnitude is the ratio of the
magnitude of the twop numbers, and its angle is
difference between the angle of the numerator and
the angle of the denominator. This is illustrated as
follows:
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Division: Polar Form

Complex numbers: Z1 =r1 /91, Za =r2/pg

Division:

Therefore,

7 =— (1.631)

= — /91— @9 solution (1.632)

Examples

Example 1.6. Divide the complex numbers z =
10/30° and w =5/120° Solutions:

T =

~10/30°

~ 5/120°
=2/-90° answer

g |

1.7 Procedure
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Engineering Numbers Formats

...what a man means by a term is to be found by observing what he does
with it, not by what he says about it.
— Percy W. Bridgman, (1882-1961)

Scientific Notation

Engineering Notation

159
4.59% 10°

459 % 10¢

. . 11

2.1 Objectives 4.59x 10"
459 % 107

459

4.59 % 103
45.9%10°
459 % 107
459 10°%

2.2 Theory

This chapter will provide a brief review of engineer-
ing numbers formatted to satisfy certain require-
ments, and how to use them in practical applica-
tions.

2.3 Significant Figures

When reporting values that were the result of a
measurement or calculated using measured val-
ues, it is important to have a way to indicated the
certainty of the measurement. The reported val-
ues must not appear as more accurate than the the
equipment used to make the measurements. This
is accomplished through the use of significant fig-
ures. Significant figures are the digits in a value
that are known with some degree of confidence.
Consider Table 2.3 that shows measurements using

three different instrumentsl . The Signiﬁcant ﬁg - ! Data taken form the Non-destructive

ures of the measurement depend on the accuracy of

Testing (NDT) Resource Center.
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the instrument; the more precise is the instrument
the more significant figures we can have confidence
on.

To work with significant figures when using engi-
neering numbers, we must follow established rules,
as is explained nedxt.

2.3.1 Rules for Significant Figures

There are conventions that must be followed for
expressing numbers so that their significant figures
are properly indicated. These conventions are:

1. All non-zero numbers ARE significant. The
number 33.2 has THREE significant figures be-
cause all of the digits present are non-zero.

2. Zeros between two non-zero digits ARE sig-
nificant. 2051 has FOUR significant figures. The
zero is between a 2 and a 5. 50014 has five signif-
icant digits.

3. Leading zeros (those to the left of the first non-
zero digit) are NOT significant. They are nothing
more than "place holders." The number 0.54 has
only TWO significant figures. 0.000032 also has
TWO significant figures. All of the zeros are lead-
ing.

4. Trailing zeros (the right most zeros) ARE sig-
nificant when there is decimal point in the num-
ber(For this reason it is important to give con-
sideration to when a decimal point is used and
to keep the trailing zeros to indicate the actual
number of significant figures.). There are FOUR
significant figures in 92.00 (See Note 7). 400 and
2.00 have three significant figures, whereas 0.050
has two significant figures (the 5 and the 0 to the
right of 5)

‘ Instrtument = ‘ A B C
Measured Value 3g 2.53g 2.531g
Precision lg 0.01g 0.001g
Significant Figures | 1 3 4

Table 2.1: Weight Measurements
A= Postage scale

B=— Two-pan balance

C— Analytic balance

Note 7. Note: 92.00 is different from 92;
a scientist who measures 92.00 milliliters
knows his value to the nearest 1/100th
milliliter; meanwhile his colleague who
measured 92 milliliters only knows

his value to the nearest 1 milliliter. It’s
important to understand that zero does
not mean nothing. Zero denotes actual
information, just like any other number.
You cannot tag on zeros that aren’t certain
to belong there.
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5. Trailing zeros in a whole number with the dec-
imal shown ARE significant. Placing a decimal
at the end of a number is usually not done. By

convention, however, this decimal indicates a sig-

nificant zero. For example, "540." indicates that

the trailing zero IS significant; there are THREE

significant figures in this value.

6. Trailing zeros in a whole number with no dec-
imal shown are NOT significant. Writing just
"540" indicates that the zero is NOT significant,

and there are only TWO significant figures in this
value. 470,000 has two significant figures; 400 or

4 x 10? indicates only one significant figure. (To
indicate that the trailing zeros are significant a
decimal point must be added. "400." has three
significant digits and is written as 4.00 x 102 in
scientific notation.)

7. Exact numbers have an INFINITE number of
significant figures. Defined numabers also have
an infinite number of significant digits. For ex-
ample, 1 meter = 1.00 meters = 1.0000 meters =
1.0000000000000000000 meters, etc. The num-
ber of centimeters per inch (2.54) has an infinite

number of significant digits, as does the speed of
light (299792458 m/s).

8. For a number in scientific notation: N x 10%,
all digits comprising N ARE significant by the
first 6 rules; "10" and "x" are NOT significant.
5.02 x 10* has THREE significant figures: "5.02."
"10 and "4" are not significant. See Note 8 for
more details.

2.3.2 Rules for Rounding

When a value contains too many significant fig-
ures, it must be rounded off. There are three rules

Note 8. Rule 8 provides the opportunity
to change the number of significant
figures in a value by manipulating its
form. For example, let’s try writing 1100
with THREE significant figures. By rule
6, 1100 has TWO significant figures; its
two trailing zeros are not significant. If
we add a decimal to the end, we have
1100. with FOUR significant figures

(by rule 5.) But by writing it in scientific
notation: 1.10 x 103, we create a THREE-
significant-figure value.
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that are commonly used to minimize the error in-
troduced into a value do to rounding.

With the exception of the enumeration of discrete
objects (e.g., 5 cars, 113 cents), a measurement is
always an approximation. For example, a friend
asks you what time it is. You look at your watch
and see that it says: 22:44:35. Are you going to tell
your friend, "It’s 2:44 and 35 seconds"? I suspect
not! You'll probably be thoughtful enough to ap-
proximate by rounding up to 2:45. If, on the other
hand, it’s 2:32:14, you might round down to 2:30.

Mathematically, rounding has a more formal def-
inition. The final digit (or significant figure) of any
number is actually an approximation.

To round off a number to N significant figures,
the following three rules apply:

1. This method involves underestimating the value
when rounding the five digits 0, 1, 2, 3, and 4. If
the digit to the right of the last digit you want
to keep (that is, the first digit you want to drop
off, N+1) is less than 5, then drop it (and every-
thing to its right.) The value left behind is your
rounded value.

2. This method involves overestimating the value
when rounding the five digits 5, 6, 7, 8, and 9. If
the digit in the N+1 place is greater than 5, then
drop it (and everything to its right), and raise the
last remaining digit by 1.

3. This method takes into account that zero doesn’t
really require rounding and when rounding 5,
this value is exactly centered between the un-
derestimated value if it is rounded down and the
overestimated value if it is rounded up. There-
fore, five should be rounded up half of the
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time and down half of the time. Since it would

be difficult to keep track of this when perform-
ing numerous measurements or calculations, 5
is rounded down when the preceding sig-
nificant digit is even and 5 is rounded up
when the preceding significant digit is odd.
Values less than 5 are rounded down and val-
ues greater than 5 are rounded up. For example,
2.785 would be rounded down to 2.78 and 2.775
would be rounded up to 2.78.

In summary: If the digit in the N+1 place is equal

to 5, drop it, and if the preceding (Nth) digit is

even — leave N alone; if the Nth digit is odd, raise

it by 1. This convention is necessary to keep a
set of numbers as "balanced" as possible; i.e., if
you round down for digits 1-5 (five cases) and up
for 6-9 (only 4 cases), the sum of the resulting
numbers will be, on average, lower than the sum
of the unrounded terms [HUH??]

Examples:

Example 2.1. Round 4.3127 to four significant fig-
ures.

Solution:

4.3127 has 5 significant figures; we need to drop
the final "7". That leaves us 4.312. But following
rule 1 above, we note that since 7 is greater than 5,
we need to add 1 to the last number we’re keeping
(the 2.) So our rounded number becomes 4.313.

Example 2.2. Round 10.412 to three significant
figures.

Solution:

10.412 has 5 significant figures, so we get rid of
the last two. That leaves 10.4. The digit to the right
of the "4" is 1 —and 1 is less than 5. So we leave the
4 alone. Our final estimate is 10.4.

You can appreciate that 4.313 is a bet-
ter approximation of 4.3127 than 4.312
would be. Since the "7" we dropped indi-
cates that the true value of the number
is "closer" to 4.313 than it is to 4.312,
we've created a better approximation by
making that change.
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Example 2.3. Round 14.65 to three significant fig-
ures.

Solution:

Here, N+1 = 5. To decide what to do with 6 (our
N), recall rule 3. If the number before the 5 is even,
we leave it alone when we drop the 5. 6 is even, so
our final value is 14.6.

Example 2.4. Round 1000.3 to four significant fig-
ures.

Solution:

This one’s more complex, because it involves ze-
ros. The rules governing whether a digit qualifies as
"significant” are more complicated for zeros. Make
sure you read the Significant Figures Tutorial be-
fore you try to solve this example.

2.3.3 Significant Digits in Calculations.

2 Once the significant figures of numbers used in 2 Partial support for this work was
. . . provided by the NSF-ATE (Advanced
calculations are determined and used in these cal- Technological Education) program
culations, we must deal with the precision and sig- through grant #DUE 0101709. Opinions
. ) expressed are those of the authors (NDT
nificant figures of the result of calculations. When Resource C enter) and not necessarily

those of the National Science Foundation.

combining values with different degrees of preci-
sion, the precision of the final answer can be
no greater than the least precise measure-
ment.

Addition and Subtraction When adding and
subtracting, the final answer must be rounded

to the same precision (same number of decimal
places) as the least precise calculation value, re-
gardless of the significant figures of any one term.

Example: Add x = 203.221 + 4.7 and express the
result following the rule (see above) for addition.
Solution:

x=203.221+4.7=207.921
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The final result, however, should be rounded to only
one decimal place, just like the number 4.7.
Therefore
x=207.9

Multiplication, Division, and Roots. When
multiplying, dividing, or taking roots, the result
should have the same number of significant figures
as the least precise number in the calculation.

Example 2.3.1: Multiplication, Division, Root

1. Example: multiply y = 8.61 x 3.1105 and express the result in the ap-
propriate form.

Solution:
y=(8.61)(3.1105) = 26.781405

The final answer should be rounded to two decimal places: y = 26.78

. s _ 2.1536
2. Example: Divide ¢ = =53
Solution:
2.1536
= =1.1988444...
1.8

The final asnwer must be rounded to two significant figures (due to 1.8):
t=12

Example 2.5. Determine s = v/2.41.
s=v2.41=1.552417...

Then, s =1.55

Logarithms and Antilogithms. When calculat-
ing the logarithm of a number, the mantissa
(the number to the right of the decimal point in the
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logarithm) must have the same number of sig-
nificant figures as there are in the number
whose logarithm is being found.

Example 2.3.2: Logarithm

Example: Determine the logarithm (base-10) of w = 10g(3.000 x 10*)and
express the result in the appropriate form.
Solution:

w =10g(8.000 x 10* = 4.4771212...

Now, the number of significant figures of 3.000 is 4, so the final answer
should have 4 decimal places.Result: w =4.4771

When calculating the antilogarithm of a num-
ber, the result should have the same number of
significant figures as the mantissa in the loga-
rithm.

Example 2.3.3: Antilogarithm

e Example: Determine the antilogarithm (base-10) of v = antilog(0.502))
and express the result in the appropriate form.

Solution:
v =antilog(0.502) = 10%°%? = 3.17687....

The number of significant figures of the mantissa of the log is 3, so the
final answer should have 3 significant figures. Result: v = 3.18
Example: Determine the antilogarithm (base-10) of u = antilog(0.5))
and express the result in the appropriate form.

Solution:
u =antilog(0.50) = 10%° = 3.162277......

The number of significant figures of the mantissa of the log is 2, so the
final answer should have 2 significant figures. Result: u =3.2

Multiple Calculations. If a calculation involves
a combination of mathematical operations,
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¢ perform the calculation and express the result us-
ing more figures than will be significant to arrive
at a value.

* g0 back and look at the individual steps of the
calculation and determine how many significant
figures would carry through to the final result
based on the above conventions.

An example:
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Example 2.3.4: Combination

Example: Determine the value of
_5.254+0.0016
- 34.6

Solution: After preforming the operations (not taking into account the
significant figures of each number) we get

~2.9231x1073

2 =0.1496649538

Now, let’s look at each calculation in the equation in order to determine

the final value:

5.254+0.0016 = 5.25566 The result of this operation shuold have only 3
decimals because the sum should have the same number of decimals as
the number with the least number of decimals (5.254), then the result
is: 5.254 +0.0016 = 5.256

% =0.1519075... The result should have the same number of signif-
icant figures as the number with the least significant figures (34.6).

2.56 _
Therefore 516 = 0.152

0.152-0.002231 = 0.149769 The final result of this operation should only
have 3 decimals. So, 0.152 —-0.002231 = 0.149

Therefore the value obtained (z = 0.1496649538) should be rounded to

three decimal places. or,

z=0.150=1.50x10"1

2.3.4 Percent Error

Many times we have to compare a measured value
(approximate value) to the know value of that mea-
surement(exact value). When reporting the mea-
sured value we must estimate the the difference be-
tween the two values. Normally we represent this
difference int terms of a percentage. This is called
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percent error or percentage error.

The purpose of a percent error calculation is to
determine how close a measured value is to a true
value. In some fields, percent error is always ex-
pressed as a positive number. In others, it is correct
to have either a positive or negative value. The sign
may be kept to determine whether recorded values
consistently fall above or below expected values.

Percent error is related to two error calculation
types: absolute error and relative error. Abso-
lute error is the difference between an experimen-
tal and known valu. When you divide that number
by the known value you get relative error. Percent
error is relative error multiplied by 100%.

To calculate percent error, use Equation 2.3.4

# —#
%error _ measured exact « 100 (2.31)

#exact

Note 9. A percentage very close to zero means you
are very close to your targeted value, which is good.
It is always necessary to understand the cause of the
error, such as whether it is due to the imprecision of
your equipment, your own estimations, or a mistake
in your experiment. See Example 2.3.4

An example:

53
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Example 2.3.5: Speed of Light

Example: The 17th century Danish astronomer, Ole Rgmer, observed that
the periods of the satellites of Jupiter would appear to fluctuate depend-
ing on the distance of Jupiter from Earth. The further away Jupiter was,
the longer the satellites would take to appear from behind the planet. In
1676, he determined that this phenomenon was due to the fact that the
speed of light was finite, and subsequently estimated its velocity to be ap-
proximately 220,000 km/s. The current accepted value of the speed of light
is almost 299,800 km/s. What was the percent error of Rgmer’s estimate?
Solution:

Experimental value =220,000 km/s = 2.2 x 108 m/s

theoretical value = 299,800 km/s = 2.998 x 108 m/s

Then

2.2 x 108 m/s —2.998 x 108 m/s
Poerror = T x 100 = 26.62%

So Rgmer was quite a bit off by our standards today, but considering he
came up with this estimate at a time when a majority of respected as-
tronomers, like Cassini, still believed that the speed of light was infinite,
his conclusion was an outstanding contribution to the field of astronomy.

This example was taken form the Department of Physics and Astronomy of the University of Iowa (hitp:/ |/ astro.physics.uiowa.edu /)

2.3.5 Exponents

2.3.6 Engineering and Scientific Notations
2.8.7 System of Units and Conversions
2.3.8 Dimensional Analysis

2.4 Procedure
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Math Concepts

Mathematics reveals its secrets only to those who approach it with pure
love, for its own beauty.

— Archimedesi, 287 BC - 212 BC

3.1 Objectives

3.2 Theory

3.2.1 Figure 3.1: Math Concepts
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