Share Email Print
cover

Proceedings Paper

Fractional wavelets, derivatives, and Besov spaces
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We show that a multi-dimensional scaling function of order γ (possibly fractional) can always be represented as the convolution of a polyharmonic B-spline of order γ and a distribution with a bounded Fourier transform which has neither order nor smoothness. The presence of the B-spline convolution factor explains all key wavelet properties: order of approximation, reproduction of polynomials, vanishing moments, multi-scale differentiation property, and smoothness of the basis functions. The B-spline factorization also gives new insights on the stability of wavelet bases with respect to differentiation. Specifically, we show that there is a direct correspondence between the process of moving a B-spline factor from one side to another in a pair of biorthogonal scaling functions and the exchange of fractional integrals/derivatives on their wavelet counterparts. This result yields two "eigen-relations" for fractional differential operators that map biorthogonal wavelet bases into other stable wavelet bases. This formulation provides a better understanding as to why the Sobolev/Besov norm of a signal can be measured from the ℓp-norm of its rescaled wavelet coefficients. Indeed, the key condition for a wavelet basis to be an unconditional basis of the Besov space Bqs(Lp(Rd)) is that the s-order derivative of the wavelet be in Lp.

Paper Details

Date Published: 13 November 2003
PDF: 6 pages
Proc. SPIE 5207, Wavelets: Applications in Signal and Image Processing X, (13 November 2003); doi: 10.1117/12.507443
Show Author Affiliations
Michael A. Unser, Ecole Polytechnique Federale de Lausanne (Switzerland)
Thierry Blu, Ecole Polytechnique Federale de Lausanne (Switzerland)


Published in SPIE Proceedings Vol. 5207:
Wavelets: Applications in Signal and Image Processing X
Michael A. Unser; Akram Aldroubi; Andrew F. Laine, Editor(s)

© SPIE. Terms of Use
Back to Top