Share Email Print

Proceedings Paper

A class of heavy-tailed multivariate non-Gaussian probability models for wavelet coefficients
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is well documented that the statistical distribution of wavelet coefficients for natural images is non-Gaussian and that neighboring coefficients are highly dependent. In this paper, we propose a new multivariate non-Gaussian probability model to capture the dependencies among neighboring wavelet coefficients in the same scale. The model can be expressed as K exp(-||w||) where w is a N-element vector of wavelet coefficients and ||w|| is a convex combination of l2 norms over subspaces of RN. This model includes the commonly used independent Laplacian model as a special case but it has many more degrees of freedom. Based on this model, the corresponding non-linear threshold (shrinkage) function for denoising is derived using Bayesian estimation theory. Although this function does not have a closed-form solution, a successive substitution method can be used to numerically compute it.

Paper Details

Date Published: 13 November 2003
PDF: 8 pages
Proc. SPIE 5207, Wavelets: Applications in Signal and Image Processing X, (13 November 2003); doi: 10.1117/12.504644
Show Author Affiliations
Fei Shi, Polytechnic Univ. (United States)
Ivan W. Selesnick, Polytechnic Univ. (United States)

Published in SPIE Proceedings Vol. 5207:
Wavelets: Applications in Signal and Image Processing X
Michael A. Unser; Akram Aldroubi; Andrew F. Laine, Editor(s)

© SPIE. Terms of Use
Back to Top