Share Email Print
cover

Proceedings Paper

Image encoding with triangulation wavelets
Author(s): D. J. Hebert; HyungJun Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We demonstrate some wavelet-based image processing applications of a class of simplicial grids arising in finite element computations and computer graphics. The cells of a triangular grid form the set of leaves of a binary tree and the nodes of a directed graph consisting of a single cycle. The leaf cycle of a uniform grid forms a pattern for pixel image scanning and for coherent computation of coefficients of splines and wavelets. A simple form of image encoding is accomplished with a 1D quadrature mirror filter whose coefficients represent an expansion of the image in terms of 2D Haar wavelets with triangular support. A combination the leaf cycle and an inherent quadtree structure allow efficient neighbor finding, grid refinement, tree pruning and storage. Pruning of the simplex tree yields a partially compressed image which requires no decoding, but rather may be rendered as a shaded triangulation. This structure and its generalization to n-dimensions form a convenient setting for wavelet analysis and computations based on simplicial grids.

Paper Details

Date Published: 1 September 1995
PDF: 12 pages
Proc. SPIE 2569, Wavelet Applications in Signal and Image Processing III, (1 September 1995); doi: 10.1117/12.217594
Show Author Affiliations
D. J. Hebert, Univ. of Pittsburgh (United States)
HyungJun Kim, Univ. of Pittsburgh (United States)


Published in SPIE Proceedings Vol. 2569:
Wavelet Applications in Signal and Image Processing III
Andrew F. Laine; Michael A. Unser, Editor(s)

© SPIE. Terms of Use
Back to Top