Share Email Print

Spie Press Book

Laser Beam Scintillation with Applications
Format Member Price Non-Member Price

Book Description

Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

Book Details

Date Published: 20 July 2001
Pages: 416
ISBN: 9781510604896
Volume: PM99
Errata

Table of Contents
SHOW Table of Contents | HIDE Table of Contents
Preface
Symbols and Notation
PART I SCINTILLATION MODELS
1 OPTICAL WAVE PROPAGATION IN RANDOM MEDIA: BACKGROUND REVIEW
1.1 INTRODUCTION
1.2 OPTICAL PROPERTIES OF THE ATMOSPHERE
1.2.1 Atmospheric Structure with Altitude
1.2.2 Absorption and Scattering
1.2.3 Optical Turbulence
1.2.4 Power Spectrum Models
1.3 GAUSSIAN-BEAM WAVE MODEL
1.3.1 Transmitter and Receiver Beam Parameters
1.4 WAVE PROPAGATION IN RANDOM MEDIA: METHODS OF ANALYSIS
1.4.1 Rytov Approximation
1.4.2 Extended Huygens-Fresnel Principle
1.5 MUTUAL COHERENCE FUNCTION: WEAK FLUCTUATIONS
1.5.1 Spatial Coherence Radius
1.5.2 Mean Irradiance
1.5.3 Angle-of-Arrival and Image Dancing
1.5.4 Beam Wander
1.6 MUTUAL COHERENCE FUNCTION: STRONG FLUCTUATIONS
1.6.1 Mean Irradiance
1.6.2 Spatial Coherence Radius
1.6.3 Effective Beam Parameters
1.7 SCINTILLATION INDEX AND COVARIANCE FUNCTION
1.7.1 Scintillation Index: Weak Fluctuations
1.7.2 Scintillation Index: Strong Fluctuations
1.7.3 Covariance Function: Weak Fluctuations
1.7.4 Aperture Averaging of Scintillation: Weak Fluctuations
1.8 PARAXIAL ABCD OPTICAL SYSTEMS
1.8.1 Generalized Huygens-Fresnel Integral
1.8.2 Gaussian Lens
1.8.3 Image Plane
1.9 DOUBLE-PASSAGE WAVES
1.9.1 Gaussian Mirror
1.9.2 Mutual Coherence Function
1.9.3 Covariance Function and Scintillation Index
REFERENCES
2 MODELING OPTICAL SCINTILLATION
2.1 INTRODUCTION
2.2 BACKGROUND ON SCINTILLATION
2.2.1 Models for Refractive Index Fluctuations
2.2.2 Physical Model for Amplitude Fluctuations
2.3 THE MODULATION PROCESS
2.3.1 Scintillation Index
2.3.2 Modified Rytov Theory
2.4 SPATIAL FILTER FUNCTIONS
2.4.1 Inner Scale Effects
2.4.2 Outer Scale Effects
2.5 DISTRIBUTION MODELS FOR THE IRRADIANCE
2.5.1 Lognormal Distribution
2.5.2 K Distribution
2.5.3 Lognormal-Rician Distribution
2.5.4 Gamma-Gamma Distribution
REFERENCES
3 THEORY OF SCINTILLATION: PLANE WAVE MODEL
3.1 INTRODUCTION
3.2 ZERO INNER SCALE MODEL
3.2.1 Effective Kolmogorov Spectrum
3.3 NONZERO INNER SCALE MODEL
3.3.1 Effective Atmospheric Spectrum
3.3.2 Outer Scale Effects
3.4 COVARIANCE FUNCTION OF IRRADIANCE
3.4.1 Zero Inner Scale Model
3.4.2 Nonzero Inner Scale Model
3.5 TEMPORAL SPECTRUM
3.5.1 Zero Inner Scale Model
3.5.2 Nonzero Inner Scale Model
3.6 GAMMA-GAMMA DISTRIBUTION
3.6.1 Comparison with Simulation Data
REFERENCES
4 THEORY OF SCINTILLATION: SPHERICAL WAVE MODEL
4.1 INTRODUCTION
4.2 ZERO INNER SCALE MODEL
4.2.1 Effective Kolmogorov Spectrum
4.3 NONZERO INNER SCALE MODEL
4.3.1 Effective Atmospheric Spectrum
4.3.2 Outer Scale Effects
4.3.3 Comparison with Experimental Data
4.4 COVARIANCE FUNCTION OF IRRADIANCE
4.5 GAMMA-GAMMA DISTRIBUTION
4.5.1 Comparison with Simulation Data
REFERENCES
5 THEORY OF SCINTILLATION: GAUSSIAN-BEAM WAVE MODEL
5.1 INTRODUCTION
5.2 ASYMPTOTIC THEORY OF SCINTILLATION
5.2.1 Effective Beam Parameters
5.2.2 Radial Component
5.3 ZERO INNER SCALE MODEL
5.4 NONZERO INNER SCALE MODEL
5.4.1 Outer Scale Effects
REFERENCES
6 APERTURE AVERAGING
6.1 INTRODUCTION
6.2 ABCD MATRIX FORMULATION
6.3 APERTURE AVERAGING FACTOR: PLANE WAVE
6.3.1 Zero Inner Scale
6.3.2 Nonzero Inner Scale
6.3.3 Outer Scale Effects
6.3.4 Asymptotic Analysis
6.4 APERTURE AVERAGING FACTOR: SPHERICAL WAVE
6.4.1 Zero Inner Scale
6.4.2 Nonzero Inner Scale
6.4.3 Outer Scale Effects
6.4.4 Comparison with Experimental Data
6.4.5 Asymptotic Analysis
6.5 APERTURE AVERAGING FACTOR: GAUSSIAN-BEAM WAVE
6.5.1 Zero Inner Scale
6.5.2 Nonzero Inner Scale
6.5.3 Outer Scale Effects
6.6 TEMPORAL SPECTRUM OF IRRADIANCE FLUCTUATIONS
REFERENCES
PART II APPLICATIONS
7 LASER COMMUNICATION SYSTEMS
7.1 INTRODUCTION
7.2 DIRECT DETECTION OPTICAL RECEIVERS
7.2.1 Threshold Detection in the Absence of Atmospheric Turbulence
7.2.2 Frequency of Fades and Surges
7.2.3 Threshold Detection in the Presence of Atmospheric
Turbulence
7.3 COHERENT OPTICAL RECEIVERS
7.3.1 Threshold Detection in the Absence of Atmospheric Turbulence
7.3.2 Frequency of Fades and Surges
7.3.3 Threshold Detection in the Presence of Atmospheric
Turbulence
7.4 SPATIAL DIVERSITY RECEIVERS
7.4.1 Array Receivers in Direct Detection
7.4.2 Aperture Averaging
7.4.3 Linear Combining Methods for Coherent Detection
7.4.4 EG Array Receivers
7.5 BIT ERROR RATE (BER) PERFORMANCE
7.5.1 Direct Detection Binary Baseband Signaling
7.5.2 Coherent Detection Digital Signaling
REFERENCES
8 FADE STATISTICS FOR LASERCOM SYSTEMS
8.1 INTRODUCTION
8.2 PROBABILITY OF FADE MODELS
8.3 EXPECTED NUMBER OF FADES
8.3.1 Lognormal Model
8.3.2 Gamma Model
8.3.3 Gamma-Gamma Model
8.4 TERRESTRIAL LASERCOM LINK
8.4.1 Probability of Fade
8.4.2 Mean Fade Time
8.5 UPLINK/DOWNLINK SLANT PATHS
8.5.1 Atmospheric Model for Cn2
8.5.2 Spatial Filter Models
8.6 DOWNLINK FROM A SATELLITE: PLANE WAVE MODEL
8.6.1 Scintillation Index
8.6.2 Covariance Function
8.6.3 Probability of Fade
8.7 UPLINK TO A SATELLITE: SPHERICAL WAVE MODEL
8.7.1 Scintillation Index
8.7.2 Covariance Function
8.7.3 Probability of Fade
REFERENCES
9 LASER RADAR SYSTEMS: SCINTILLATION OF RETURN WAVES
9.1 INTRODUCTION
9.2 REVIEW OF BASIC RADAR PRINCIPLES
9.2.1 Range and Doppler Frequency
9.2.2 Classification of Targets
9.3 LASER RADAR CONFIGURATION
9.3.1 Gaussian Beam Parameters
9.3.2 Statistical Characteristics of Illumination Beam
9.3.3 Backscatter Amplification Effect
9.3.4 Scintillation Index
9.4 UNRESOLVED SMALL TARGET: SPHERICAL WAVE MODEL
9.4.1 Backscatter Amplification Factor
9.4.2 Scintillation Index: Bistatic Channel
9.4.3 Scintillation Index: Monostatic Channel
9.5 UNRESOLVED SMALL TARGET:
GAUSSIAN-BEAM WAVE MODEL
9.5.1 Backscatter Amplification Factor
9.5.2 Scintillation Index: Bistatic Channel
9.5.3 Scintillation Index: Monostatic Channel
9.6 FINITE DIFFUSE SURFACE: SPHERICAL WAVE MODEL
9.6.1 Backscatter Amplification Factor
9.6.2 Scintillation Index Part I
9.6.3 Scintillation Index Part II
9.7 THRESHOLD DETECTION
9.7.1 Direct Detection
9.7.2 Coherent Detection
9.7.3 Aperture Averaging
9.8 EXPERIMENTAL DATA FOR EG ARRAY RECEIVERS
9.8.1 Data Analysis for a Single Aperture: Point Target
9.8.2 Data Analysis for a Single Aperture: Diffuse Target
9.8.3 Multiple Apertures: Diffuse Target
REFERENCES
10 LASER RADAR SYSTEMS: IMAGING THROUGH TURBULENCE
10.1 INTRODUCTION
10.2 REVIEW OF LINEAR SHIFT-INVARIANT (LSI) SYSTEMS
10.2.1 Fourier Transform Analysis
10.3 COHERENT IMAGING SYSTEMS
10.3.1 Shift-Invariance
10.3.2 Impulse Response and Coherent Transfer Function
10.4 INCOHERENT IMAGING SYSTEMS
10.4.1 Targets
10.4.2 Point Spread Function and Modulation Transfer Function
10.4.3 Target Resolution
10.4.4 Atmospheric Effects
10.4.5 Laser Imaging Radar
10.5 UNRESOLVED SMALL TARGET
10.5.1 Total MTF of Return Wave
10.5.2 Scintillation Index of Return Wave
10.5.3 Single Pixel Signal-to-Noise Ratio
10.6 FINITE ROUGH TARGET
10.6.1 Propagation Path Characteristics
10.6.2 Statistical Model for Target
10.6.3 Total MTF of Return Wave
10.6.4 Scintillation Index of Return Wave
10.6.5 Single Pixel Signal-to-Noise Ratio
REFERENCES

© SPIE. Terms of Use
Back to Top