Share Email Print

Spie Press Book

Chemical Vapor Deposited Zinc Sulfide
Format Member Price Non-Member Price

Book Description

Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

Book Details

Date Published: 17 April 2013
Pages: 192
ISBN: 9780819495891
Volume: PM237

Table of Contents
SHOW Table of Contents | HIDE Table of Contents

Chapter 1 Physics and Chemistry of ZnS
1.1 Crystallography
      1.1.1 Stoichiometry and oxygen impurity
      1.1.2 Detailed crystallography and lattice parameter
      1.1.3 Polytypes and hexagonality
      1.1.4 Phase transformation and twinning
1.2 Electronic and Vibrational Structure
      1.2.1 Electronic structure
      1.2.2 Vibrational structure
1.3 Important Defects and Chemistry
      1.3.1 Native defects
      1.3.2 Oxygen
      1.3.3 Hydrogen
      1.3.4 Transition metals
References

Chapter 2 Technical Issues in Processing of CVD ZnS
2.1 Introduction
      2.1.1 Vapor phase equilibrium
2.2 Chemical Vapor Deposition of ZnS
      2.2.1 Homogeneous and heterogeneous CVD reactions
      2.2.2 Commercial CVD reactor considerations
      2.2.3 Summary
2.3 Heat Treatment of CVD ZnS
      2.3.1 Annealing
      2.3.2 Hot pressing and sintering of ZnS powders
      2.3.3 Hot isostatic pressing
      2.3.4 Summary
References

Chapter 3 Structure and Microstructure
3.1 Atomic Structure
      3.1.1 X-ray diffraction
      3.1.2 Electron diffraction
3.2 Nanostructure and Microstructure
      3.2.1 Recrystallization as a result of heat treatment of CVD ZnS
      3.2.2 Effects of HIP on mechanical properties
3.3 Mesostructure and Macrostructure
References

Chapter 4 Optical Transmission
4.1 Experimental transmission Curves
      4.1.1 Single-crystal ZnS
      4.1.2 Polycrystalline ZnS, no post-processing
      4.1.3 Heat-treated and HIPped samples
4.2 Mechanisms for Transmission Improvement
      4.2.1 Isothermal heat treatment
      4.2.2 Hot isostatic pressing
References

Chapter 5 The Development of Chemically Vapor Deposited ZnS
5.1 Chemical Vapor Deposition
5.2 Raytheon High-Temperature Materials
5.3 Raytheon Chemical Vapor Deposited Zinc Sulfide
5.4 Multispectral ZnS and Elemental ZnS
5.5 "Improvements" to CVD ZnS: Composites with ZnGa2S4 and Diamond
5.6 Applications of CVD ZnS
References

Chapter 6 Perspective and Future Work
6.1 What is the Nature of Standard CVD ZnS?
      6.1.1 What is red ZnS?
      6.1.2 What is elemental ZnS?
6.2 What Is the Nature of Transformation to Multispectral ZnS?
      6.2.1 What is the HIP doing?
      6.2.2 What is the metal doing?
6.3 Conclusions
6.4 Suggestions for Future Work
6.5 Final Thoughts
References

Appendix Engineering Data
A.1 Table of ZnS Engineering Properties
A.2 Elastic Properties
      A.2.1 Density
      A.2.2 Young's modulus and Poisson's ratio
A.3 Mechanical Properties
      A.3.1 Hardness
      A.3.2 Toughness
      A.3.3 Fracture strength
      A.3.4 Rain and sand erosion resistance
      A.3.5 Laser damage effects
A.4 Thermal Properties
      A.4.1 Thermal expansion
      A.4.2 Thermal conductivity
      A.4.3 Specific heat (heat capacity)
A.5 Optical Properties
      A.5.1 Refractive index
      A.5.2 Thermo-optic coefficient
      A.5.3 Absorption coefficient
      A.5.4 Dielectric constant
      A.5.5 Scattering
References


Preface

Zinc sulfide (ZnS) has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared (8�12 μm) transparency, mechanical durability, and elevated-temperature performance. Its unique set of properties extends its usefulness to electroluminescent phosphors, optical thin films used for filters and antireflection (AR) coatings, as well as various other opto-electronic applications. High-optical-quality, chemical vapor deposited ZnS windows several millimeters thick transmit visible light and so have received attention as candidates for multispectral windows.

Naturally occurring zinc sulfide is well known as the primary ore of zinc. The common names for the cubic form of ZnS all come from its superficial resemblance to galena (lead sulfide, PbS), but ZnS does not yield any metal when smelted. It was therefore called "blende" or "zincblende" (from the German blenden, "to deceive" or "to blind"), or "sphalerite" [from the Greek sphaleros, "deceptive" or "treacherous."] A special white, transparent, or colorless variety of sphalerite from Franklin, New Jersey, and Nordmark, Sweden is called cleiophane, which is nearly pure ZnS with only traces of cadmium. Mineral sphalerite tends to have a large component of iron and manganese, and some specimens are very black, so-called "black jack." Mineral cleiophane and sphalerite exhibit different-colored fluorescence under short-wavelength and long-wavelength ultraviolet light, and are of interest to the mineral collector. Wurtzite is a less common hexagonal form of ZnS, named after the French chemist Charles-Adolphe Wurtz (1817-1884) by C. Friedel when it was first identified from a Bolivian silver mine. Mineral hexagonal zinc sulfide containing significant amounts of cadmium is known as pribramite. Hexagonal zinc oxysulfide has been called voltzite or voltzine, though these terms have been used to describe a lead oxysulfide as well.

Bulk ZnS for infrared windows is traditionally manufactured by chemical vapor deposition (CVD) in large reactors. Deposition temperature and mole fractions of the reactants, H2S gas and Zn vapor, have a large influence on visible scatter and absorption. These effects have been ascribed to electronic defects in the bandgap, hexagonal phase ZnS, and residual porosity, but the exact mechanisms have never been adequately explained.

A multispectral form of ZnS can be created by taking traditionally grown polycrystalline CVD ZnS, which is visibly yellow and opaque, and subjecting it to a post-deposition heat treatment under pressure. The heat and pressure result in recrystallization of the CVD ZnS, large grain growth, and a visibly clear and colorless product. The kinetics of this postprocess, as well as the dependence on the platinum foil that typically encases the ZnS during heat tretment, remain poorly understood. It is known that CVD materials grown under different conditions do not behave identically when subsequently heat treated.

The purpose of this book is to review the physical properties of CVD ZnS and their relationship to the chemical vapor deposition process that produced them. We begin with the physics and chemistry of ZnS itself, including its many polytypes. This establishes a basis for understanding the defect structure and how it influences observed properties. Attention is then turned to the CVD process and the resulting forms of ZnS with properties that vary widely with processing conditions. To understand these variations, an in-depth look at the material microstructure follows, including the effects of postdeposition heat treatments.

For optical applications, the optical transmittance is of primary importance. ZnS intrinsically exhibits very broadband transparency beginning in the ultraviolet and extending through the infrared. This intrinsic transparency, coupled with modest mechanical durability, makes it unique among available infrared window materials. CVD ZnS optical properties are discussed, including the effects on these optical properties of postdeposition heat treatment, with comments on mechanisms for transparency improvements.

Finally, because the CVD process itself is central to the development of this material, a brief history of this process is presented, beginning with its use in the 19th century as a coating technology. The evolution of CVD as a bulk-materials process came later, and only by the mid-twentieth century was it beginning to be utilized to produce CVD-formed products (most notably pyrolytic graphite). This development was an important milestone, as it put in place the process technology that was critical to the subsequent development of CVD ZnS. We offer this information as a historical note to explain the success of the CVD ZnS process as well as subsequent improvements in the process, including postdeposition heat treatments, but will not focus explicitly on the CVD process technology used to produce ZnS commercially today.


John McCloy
Randal Tustison
March 2013

© SPIE. Terms of Use
Back to Top